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What is CUR?

A low-rank matrix approximation

X
m×n

≈ C
m×c

U
c×r

R
r×n

,

where generally c ≪ n and r ≪ m.

General idea:

1 Choose c columns of X. Let C contain these columns.

2 Choose r rows of X. Let R contain these rows.

3 Compute U so that CUR is a good approximation to X.

CUR algorithms can be randomized [2, 4, 5, 10] or deterministic
[12].
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CUR Example: Image Data

Original Image: 512 × 512

CUR Algorithm: Due to Mahoney and Drineas [10]
(columns/rows randomly selected based on leverage score
probability distribution)

Parameters: c = r = 100

Relative Error of CUR Approximation: 0.0093
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Motivation for Using CUR

Low-rank matrix approximations are common application tools.

Ex) Principal Component Analysis (PCA), signal denoising,
least squares

the truncated Singular Value Decomposition (SVD) can be
used

CUR allows the scientist to interpret the results in terms of
the original data.

CUR preserves the structure of the original data in C and R.

Ex) if the original data is sparse, C and R will be sparse
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Motivation for Using CUR

CUR provides interpretation by selecting the most ‘important’
columns (rows) of the matrix.

Examples [10] [12]:

influential terms in a set of documents

classification using genetic data

feature selection

Applications may not need the full CUR factorization. Sometimes
an application only requires the matrix C (or R).
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CUR through Convex Optimization

There is some previous work in CUR algorithms using convex
optimization [1, 9, 11].

Main Contributions:

novel convex optimization formulation

algorithm that solves for C and R separately and allows the
user to select the number of columns in C and rows in R
(common features in randomized CUR algorithms)

an implementation utilizing the “surrogate functional”
technique of [3] which we adapted for use with a new penalty
function

an algorithm and implementation strategy that can
accommodate a variety of penalty functions, allowing the user
a flexible framework for CUR through convex optimization
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CUR through Convex Optimization - Compute C

min
W∈Rn×m

||X− XWX||2F + λC

n∑
i=1

||W(i , :)||∞

Intuition:

The penalty function enforces sparsity in W such that some
rows are zero and others are nonzero.

The indices of the nonzero rows of W are the indices of the
columns we should select from X.

λC controls how many columns are selected from X.
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CUR through Convex Optimization - Compute C

min
W∈Rn×m

||X− XWX||2F + λC

n∑
i=1

||W(i , :)||∞ (1)

Formally:

1 Find W from Equation 1.

2 Let J be the set of indices of nonzero rows of W.

3 If |J| is the user-specified number of columns, go to step 4.
Otherwise, use bisection to compute a new value of λC and
repeat steps 1-3.

4 C = X(:, J)
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CUR through Convex Optimization - Compute R

min
W∈Rc×m

||X− CWX||2F + λR

m∑
j=1

||W(:, j)||∞ (2)

Formally:

1 Find W from Equation 2.

2 Let I be the set of indices of nonzero columns of W.

3 If |I | is the user-specified number of rows, go to step 4.
Otherwise, use bisection to compute a new value of λR and
repeat steps 1-3.

4 R = X(I , :)
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CUR through Convex Optimization - Compute U

Given C and R, solve the least squares problem

min
U

||X− CUR||F .

The solution is given by U = C+XR+ [8].
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Minimizations

There is potential for many minimizations to be solved in one run
of the algorithm.

Small to Medium sized original data:

can use a convex solver such as CVX in MATLAB [7].

Large sized original data:

CVX and other packages either cannot accommodate the
storage for the problem, or are too slow.

we use the surrogate functional technique of [3] to make this
algorithm computationally feasible.
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Surrogate Functional to Compute C

We adapt the method of Daubechies, Defrise, and De Mol [3] to
solve the minimizations in our algorithm.

Original Problem:

min
W∈Rn×m

||X− XWX||2F + λC

n∑
i=1

||W(i , :)||∞

Problem with Surrogate Functional: (for a given Z)

min
W∈Rn×m

||X− XWX||2F + λC

n∑
i=1

||W(i , :)||∞ + µ||W − Z||2F − ||XWX− XZX||2F︸ ︷︷ ︸
Ĵ(W, Z)
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Surrogate Functional to Compute C

Using the surrogate functional decouples the minimization
problem so that we can solve for each row of W separately.

Instead of solving one large problem, we solve n smaller
proximal operator problems:

min
y∈Rm

[
||y − s||22 + α||y||∞

]
.

How do we get the solution to our original problem?

Iterate: W0 = 0, Wk = argminW∈Rn×m

[
Ĵ(W,Wk−1)

]
The sequence {Wk} converges to the solution of our original
problem!
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Convex Optimization CUR Framework

We can use this algorithm and implementation strategy with other
penalty functions as long as the penalty function can be decoupled
by columns and rows.

Examples:

min
W∈Rn×m

||X− XWX||2F + λC

n∑
i=1

||W(i , :)||1

min
W∈Rn×m

||X− XWX||2F + λC ||W||2F
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Application - Natural Language Processing (NLP)

Data: TechTC document-term matrix, X, created from 139
documents, each about Florida or Evansville, Indiana [10] [12].

Florida: 71 documents, Evansville: 68 documents

Preprocessing: terms of length four or fewer filtered out of the
data, rows normalized to length one.

Matrix size: 139 × 15,170

Results: We ran our CUR algorithm on X, with c = 20, r = 10.

C: columns of X corresponding to the terms florida, click, miami,
email, south, contact, first, please, information, service, their,
business, events, about, other, links, services, spacer, indiana,
evansville
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Application - Genetics, Tumor Detection [12]

Data: NIH gene expression dataset

22,283 gene probes, 107 patients

measurements of patient responses to each gene probe (mean
centered)

we know in advance which patients have a tumor (58) and
which do not (49)

Goal: identify the most “important” probes to classify if a patient
has a tumor or not (this is the subset of probes chosen for R)

Results: our CUR performs better than the deterministic CUR of
[12], and the same as a deterministic variant of the CUR of [10].
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Interpretation of U

We can write X as a sum of weighted column-row outer products.

X ≈ CUR =
c∑

i=1

r∑
j=1

UijC(:, i)R(j , :)
T

U contains the weighting factors.

Interpretation: Uij is how “important” the ith column - jth
row pair is to reconstruction of the original matrix X [6].
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Application - Joint Sensor Selection & Channel
Assignment [6]

Data: Cognitive Radio Network

900 sensor locations, 32 frequency channels

measurements of received power levels

Goal: Identify the best locations for a small number of sensors and
determine which frequency channels to assign to each sensor
(could vary by sensor)

Results: using the CUR algorithm of [6]

R: contained the sensor locations (20 to 80)

U: used to select 8 frequency channels for each sensor
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Conclusions

We presented a novel CUR algorithm that utilizes convex
optimization.

We showed how the surrogate functional technique of [3] can
be used in the implementation of our algorithm; this allows for
the use of big data.

Our formulation and implementation strategy provide a
flexible framework for use with a variety of penalty functions.

CUR can be used in applications which require interpretation
in terms of the original data.
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