Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Foresight and Analysis of Infectious Disease Threats to Virginia's Public Health

March 2nd, 2023

(data current to February 23rd – March 1st) Biocomplexity Institute Technical report: TR BI-2023-22

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Przemyslaw Porebski, Joseph Outten, Brian Klahn, Alex Telionis, Srinivasan Venkatramanan, Bryan Lewis, Aniruddha Adiga, Hannah Baek, Chris Barrett, Jiangzhuo Chen, Patrick Corbett, Stephen Eubank, Galen Harrison, Ben Hurt, Dustin Machi, Achla Marathe, Madhav Marathe, Mark Orr, Akhil Peddireddy, Erin Raymond, James Schlitt, Anil Vullikanti, Lijing Wang, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• **Goal**: Understand impact of current and emerging Infectious Disease threats to the Commonwealth of Virginia using modeling and analytics

• Approach:

- Provide analyses and summaries of current infectious disease threats
- Survey existing forecasts and trends in these threats
- Analyze and summarize the current situation and trends of these threats in the broader context of the US and world.
- Provide broader overview of other emerging threats

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations from COVID-19 continue to decline
- Case rates and hospitalizations from Influenza are very low

Model Updates

- Model updated to fit hospital admissions as opposed to cases
 - New technique used to determine hospitalization to infection ratio
- Projection model updated this week, two non-specific scenarios related to increases in transmissibility.
- Boosted transmissibility can generate new surge in activity which does not exceed levels from Summer of 2022

COVID-19 Surveillance

Case Rates (per 100k) and Test Positivity

UNIVERSITY *J* **VIRGINIA**

District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

Trajectory	Description	Weekly Case Rate Slope (per 100k)	Weekly Hosp Rate Slope (per 100k)
Declining	Sustained decreases following a recent peak	slope < -0.88/day	slope < -0.07/day
Plateau	Steady level with minimal trend up or down	-0.88/day < slope < 0.42/day	-0.07/day < slope < 0.07/day
Slow Growth	Sustained growth not rapid enough to be considered a Surge	0.42/day < slope < 2.45/day	0.07/day < slope < 0.21/day
In Surge	Currently experiencing sustained rapid and significant growth	2.45/day < slope	0.21/day < slope

District Case Trajectories – last 10 weeks

Statuc	Number of Districts			
Status	Current Week	Last Week		
Declining	31	(28)		
Plateau	3	(3)		
Slow Growth	1	(4)		
In Surge	0	(0)		

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

MUNIVERSITY of VIRGINIA

District Case Trajectories – Full History

BIOCOMPLEXITY INSTITUTE

District Hospital Trajectories – last 10 weeks

Status	Number of Districts			
Status	Current Week	Last Week		
Declining	32	(24)		
Plateau	3	(1)		
Slow Growth	0	(10)		
In Surge	0	(0)		

Curve shows smoothed hospitalization rate (per 100K) by district Hosp rate curve colored by R_e number

BIOCOMPLEXITY INSTITUTE

2023-02-22

CDC's COVID-19 Community Levels

Last week

3-Mar-23

Red outline indicates county had 200 or more cases per 100k in last week

Pale color indicates either beds or occupancy set the level for this county

Dark color indicates both beds and occupancy set the level for this county

COVID-19 Community Levels – Use the Highest Level that Applies to Your Community					
New COVID-19 Cases Per 100,000 people in the past 7 days	Indicators	Low	Medium	High	
	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0	
Fewer than 200	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%	
	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0	
200 or more	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%	

The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days

District Trajectories with Community Levels

COVID-19 Growth Metrics

Estimating Daily Reproductive Number – VDH report dates

Feb 28th Estimates

Region	Date Confirmed R _e	Date Confirmed Diff Last Week
State-wide	0.873	0.069
Central	0.873	0.069
Eastern	0.972	0.173
Far SW	0.863	0.061
Near SW	0.702	-0.243
Northern	0.907	0.132
Northwest	0.936	0.160

Methodology

- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

1. Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, <u>https://doi.org/10.1093/aje/kwt133</u>

Wastewater Monitoring

Wastewater provides a coarse early warning of COVID-19 levels in communities

- Overall in the US, there is an increase in sites with increased levels of virus compared to 15 days ago
- Growth seen in the category where current virus levels are at or exceeding max of previous historical levels

Data Source: CDC Data Tracker

COVID-like Illness Activity

COVID-like Illness (CLI) gives a measure of COVID transmission in the community

- Emergency Dept (ED) based CLI is more correlated with case reporting
- Urgent Care (UC) is a leading indicator but may be influenced by testing for other URIs
- After recent surges, levels are now at lowest levels in past 7 months

MUNIVERSITY of VIRGINIA

COVID-19 Severity Metrics

Hospitalizations and Severe Outcomes

Proportion of most severe outcomes decreasing among those who are hospitalized

- ICU has declined from ~20% of hospitalized to 10-15% since initial Omicron wave
- Recent trend tipping up, though current levels near historic lows
- Regional variation tracks statelevel

Virginia-wide – full pandemic

Virginia-wide – recent

Virginia Regional ICU percent

Virginia Regional Ventilation %

Hospitalizations in VA by Age

Age distribution in hospitals relatively stable

- Uptick in hospitalizations mostly fueled by 70+ age group
- Pediatric hospitalizations declining

Oct Nov Dec Jan Feb Sep Oct Nov Dec 2023 date date date
Pediatric Hospitalizations by Age (0-17yo)

Note: These data are lagged and based on HHS hospital reporting

Data Source: <u>Delphi</u> and <u>HHS</u>

COVID-19 Spatial Epidemiology

Zip code level weekly Case Rate (per 100K)

Case Rates in the last week by zip code

- Statewide prevalence peaked in early January. Ra Overall case rates have declined 48% in a month.
- No zip codes containing a ٠ prison appear in this week's top 10.
- Though there are a handful of small clusters in rural regions, all metro areas are in the "green".
- Some counts are low and suppressed to protect anonymity. They are shown with a red outline.

ink	Zip Code	Name	Prev	
1	24248	Ewing	3,820	
2	23924	Chase City	3,350	
3	22610	Bentonville	3,190	
4	23964	Red Oak	3,040	
5	24216	Appalachia	2,400	
6	24122	Montvale	1,960	
7	24281	Rose Hill	1,920	
8	23960	Prospect	1,860	
9	22652	Fort Valley	1,790	
10	24120	Meadows of Dan	1,760	
Only includes zips with pop ≥ 1000 and no supp. data. * Denotes zip codes with state prisons.				

Based on Spatial Empirical Bayes smoothed point prevalence, with an 8:1 ascertainment ratio, for week ending 2023-02-28.

Point Prevalence by Zip Code

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

Point Prevalence

Risk of Exposure by Group Size and HCW prevalence

Case Prevalence in the last week by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people

- **Group Size**: Assumes **8 undetected infections** per confirmed case (ascertainment rate from recent seroprevalence survey) and shows minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 18 in Ewing, there is a 50% chance someone will be infected).
- HCW ratio: Case rate among health care workers (HCW) in the last week using patient facing health care
 workers as the numerator / population's case prevalence. Most highlighted counties have < 3 HCW cases.

Current Hot-Spots

Case rates that are significantly different from neighboring areas or model projections

- Spatial: Getis-Ord Gi* based hot spots compare clusters of zip codes with weekly case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations
- **Temporal**: The weekly case rate (per 100K) projected last month compared to those observed by county, which highlights temporal fluctuations that differ from the model's projections.
- Hot spots are sporadic around the state. Models overpredicted New River and Lenowisco. Piedmont also showed slightly fewer cases than expected. The rest of the Commonwealth tracked the model forecasts.

Scenario Trajectory Tracking

Which scenario best tracked the ground truth for each county?

 Statewide cases fell between Adaptive and VariantX. The former underpredicted cases, and the latter overpredicted. Counties were evenly split between the two. Only a few counties followed the projections of the IncreasePerm and IncreasedTemp scenarios.

COVID-19 Broader Context

United States Hospitalizations

Statuc	Number of States			
Status	Current Week	Last Week		
Declining	15	(14)		
Plateau	34	(28)		
Slow Growth	3	(11)		
In Surge	1	(0)		

US - Platea

Virginia and Her Neighbors

Around the World – Various trajectories

Confirmed cases

Hospitalizations

3-Mar-23

COVID-19 Genomic Update

SARS-CoV2 Variants of Concern

Nowcast Estimates in HHS Region 3

for 2/19/2023 - 2/25/2023

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

• Variants have been observed to: increase transmissibility, increase severity (more hospitalizations and/or deaths), and limit immunity provided by prior infection and vaccinations

Weighted and Nowcast Estimates in HHS Region 3 for Weeks of 11/20/2022 – 2/25/2023

Hover over (or tap in mobile) any lineage of interest to see the amount of uncertainty in that lineage's estimate Region 3 - Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia Nowcast: Model-based WHO label Lineage # US Class %Total Weighted Estimates: Variant proportions based on reported genomic sequencing projected estimates results of variant Omicron XBB 1.5 VOC 93.7% 92 3-94 9% proportions BQ.1.1 VOC 3.6% 3.0-4.4% BQ.1 VOC 1.1% 0.9-1.5% XBB 0.6-0.9% VOC 0.7% CH.1.1 0.3-0.8% VOC 0.5% BN.1 0.1-0.2% VOC 0.1% BA.5 0.0-0.1% VOC 0.0% 60% BF.7 VOC 0.0% 0.0-0.1% BA.5.2.6 VOC 0.0% 0.0-0.0% BA.2 VOC 0.0% 0.0-0.0% 40% BF.11 0.0-0.0% VOC 0.0% 0.0-0.0% BA.2.75 VOC 0.0% BA.2.75.2 0.0-0.0% VOC 0.0% 20% BA.4.6 0.0-0.0% VOC 0.0% B.1.1.529 VOC 0.0% 0.0-0.0% 0.0-0.0% RA 4 VOC 0.0% 2/17/22 2/31/22 /28/23 1/7/23 /14/23 1/21/23 2/4/23 BA.2.12.1 VOC 0.0% 0.0-0.0% BA.1.1 VOC 0.0% 0.0-0.0% B.1.617.2 0.0-0.0% Delta VBM 0.0% Other* 0.0% 0.0-0.1% Collection date, week ending

https://clades.nextstrain.org

Omicron Updates*

- XBB.1.5 has grown rapidly now accounting for 91%
- BQ.1 and BQ.1.1 continue to lose ground at 2% and 5% respectively
- XBB not in XBB.1.5 has fallen 1%
- BN.1 separated from BA.2.75 has fallen to 0.2%
- CH.1.1 has fallen from 2% during the holidays to just 0.7% now

*percentages are CDC NowCast Estimates

SARS-CoV2 Sequencing

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

- Current proportion of cases being sequenced is on a downward trend nationally.
- Leveraging additional resources such as wastewater sequencing and adopting into existing infrastructure will be an important supplement

https://clades.nextstrain.org

SARS-CoV2 Omicron Sub-Variants

VoC Polynomial Fit Projections

B.1.1.7

BA.1

BA.2

BA.4

BA.2.12.1

BA.4.6

BA.5

BA 2.75

BE.7

B.1.1.529

B.1.621

BO.1

BQ.1.1

BN.1 XBB

XBB.1.5

BA.5.2.6

CH.1 other

Prevalence

BQ.1

BQ.1.1

BN.1 📕 ХВВ

XBB.1.5 BA.5.2.6

CH.1

Prevalence

Virginia

Virginia BA.2.12.1 BA.4 BA.5 BA.2.75 B.1.1.529 BO.1 BQ.1.1 0.8 BN.1 XBB XBB.1.5 BA.5.2.6 CH.1 Prevalence other 0.7 0.0 2022-20-02 2023-01-01 2023-01-15 2023.02.01 2022-12-15 22-11-15

United States BA.2.12.1 BA.4 BA.5 BA.2.75 B.1.1.529 BQ.1 BQ.1.1 BN.1 XBB XBB.1.5 BA.5.2.6 CH.1 Prevalence other

Note: Everything from dotted line forward is a projection.

SARS-CoV2 Omicron Sub-Variants

<u>COV-spectrum</u> "Editor's choice" Variants to watch

National Which variant would you like to explore? Editor's choice V 3.6% BA.2.75* BA.5* and NOT BQ.1* 2.7% 25.5% XBB 66.9% BQ.1* 1.5% 62.3% CH.1.1* XBB* + S:486P (XBB.1.5) BQ.1* + S:R346T + S:144del 4.6% XBF* 0.3% XBC* 0% BN.1* 0.9% 62.9% BF.7* 0.2% S:486P

3-Mar-23

XBB.1.5

Relative growth advantage

International comparison

BA.2.75.* Relative growth advantage If variants spread pre-dominantly by local transmission across demographic group...

International comparison

Relative growth advantage If variants spread pre-dominantly by local transmission across demographic group... (show more) Estimated proportion through time 50% 40% 29% 30% 20% Current adv. @ 29-30% Mar 2023 Confidence int. @ Sep 2022 Nov 2022 1an 2023 *) Assumes that the current advantage is due to an intrinsic viral advantage (a ombination of increased mission, immune escape, and prolonged infectious period) International comparison dom × United States × Austria × New Zealand × 60% 45%-30%-15% 0%-2022-08-22 2022-09-26 2022-10-31 2022-11-28 2023-01-02 2023-02-1 Virginia - 3.1% (CH.1 and sublineages) Last Sample: 2023-02-05 14% - % CH.1_and_sublineag 175 12% 150 10% 125 8 8.0% 100 6.0% -75 4.0% 50

1an

2.0%

0.0%

1004

Oec 1072

CH.1.1*

BIOCOMPLEXITY INSTITUTE

25

100

Global SARS-CoV2 Variant Status

100

among positive pools (%) 8 8 8 8

Viral lineages a

11/29

12/27

1/24

2/21

3/21

B.1.617.2 B.1.1.529 BA.1.1 BA.2 BA.2.12.1 BA.2.75 BA.2.75.2 BN.1 CH.1.1 BA.4 BA.4.6 BA.5 BA.5.2.6 BF.7 BF.11 BQ.1 XBB.1.5 Other BQ.1.1 XBB

Variants Detected, by Collection Week

Week of Collection

7/11

8/8

9/5

10/3

10/31

11/28

12/26

2/6

6/13

https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance https://github.com/gerstung-lab/SARS-CoV-2-International (02/09/23)

4/18

5/16

Pandemic Pubs (Feb 22nd, 2023)

1. New data posted by the CDC show that for ages 18 and older, individuals vaccinated with a bivalent booster had 9.8x lower risk of dying from COVID-19 compared with unvaccinated people and 2.4x lower risk of dying compared to people vaccinated without updated booster

May 2022 Jun 2022 Jul 2022 Aug 2022 Sep 2022 Oct 2022 Nov 2022 Dec 2022

0.0

– – Unvaccinated: 18-29
 – – Unvaccinated: 30-49

Pandemic Pubs (Feb 22nd, 2023)

2. New study from Icahn school of Medicine associates vaccination with lower risk of Major Adverse Cardiac Event due to COVID

https://www.sciencedirect.com/science/article/pii/S073510972207601X

Data was taken from the National COVID Cohort Collaborative (N3C), including 1,934,294 patients aged 18 to 90 years who were initially infected with SARS-CoV-2 between March 1, 2020, and February 1, 2022. Analysis also shows risk of COVID induced MACE significantly increased with male sex; age, notably among patients ≥66 years of age; and comorbidities, especially previous MACE.

Influenza Update

Current Influenza Situation – ILI Activity

Influenza Activity is Higher than Usual

- Virginia has shifted to "Moderate" level as most states have receded to Low and Minimal levels in the past couple weeks.
- In VA ILI Activity has declined to 3-4% which is the same as in early October at the beginning of the season
- National ILI activity has also consistently declined since a peak in late November, yet remains above threshold
- Over half of the HHS regions are now below the seasonal threshold for ILI activity

Region 3

Current Influenza Situation - Hospitalizations

Influenza A hospitalizations continue decline

- National level of influenza hospitalizations have dropped to nearly pre-season levels
- Nearly all states have returned to levels below early December before the initial rise to to the peak

New Influenza Hospital Admissions Reported to HHS Protect, National Summary, October 2, 2022 – February 18, 2023

Current Combined Hospitalizations (COVID-19 & Influenza)

COVID-19 and Influenza Weekly Hospitalizations (HHS Protect)

Virginia Flu and COVID hospitalizations (Admissions)

National Flu and COVID hospitalizations (Admissions)

Model Update – Adaptive Fitting

Model Structure Extended for more sub-variants

Omicron sub-variants escape immunity induced by previous sub-variants

- Multiple strain support allows representation of differential protection based on immunological history (BA.1, BA.2, BA.2.12.1, BA.4/5, and future variants (VariantX))
- Each sub-variant has differing levels of immune escape to previous sub-variants, the prevalences are based on observations for fitting purposes, and projections use estimated future prevalences
- Adaptive fitting approach continues to use simulation to generate the full distribution of immune states across the population

Adaptive Fitting Approach

Each district fit precisely, with recent trends used for future projection

 Allows history to be precisely captured, and used to guide bounds on projections

Model: An alternative use of the same meta-population model, PatchSim with multiple tiers of immunity

- Allows for future "what-if" Scenarios to be layered on top of calibrated model
- Allows for waning of immunity and for partial immunity against different outcomes (eg lower protection for infection than death)
- Incorporation of new variants with different levels of immune escape and transmission advantage

Adaptive Fitting Approach

Hospitalization risk for different tiers of immunity calibrated to US-wide data

- Using modeled infections from past state-level projections from Scenario Modeling Hub – using periods with reasonable confidence in ascertainment ratio (before Omicron – based on seroprevalence data, after first Omicron wave – adjusted using surveys about home test usage)
- Using all US states and bootstraping to reduce bias and overfitting

Selected representative risk of hospitalization per infection:

1 in 42-49 for unprotected (A); 1 in 142-770 for vaccinated (B);

1 in 64-220 for waned vaccinated (b);

1 in 350-540 for waned reinfection or booster(no reinfection) (c)

1 in 250-320 for waned vaccination/booster with reinfection (d)

Scenarios – Transmission Conditions

- Variety of factors continue to drive transmission rates
 - Seasonal impact of weather patterns, travel and gatherings, fatigue and premature relaxation of infection control practices
- Waning Immunity: Omicron waning with a mean of 4 months
- Projection Condition Ingredients:
 - Adaptive: Controls remain as currently experienced into the future with NO influence from other conditions (eg seasonal, variants, etc.)
 - Seasonal: Controls remain the same, however, seasonal forcing or other seasonal behavior patterns
 - New Variants (VariantX): As of yet unidentified novel sub-variant with similar immune escape but no transmission advantage emerges 4 months after the last significant sub-variant and grows at a similar rate

Projection Scenarios – Combined Conditions

Name	Txm	Variant	Booster	Description
Adaptive-VariantX	С	Х	Current	Like Adaptive, with emergence of a Variant like XBB.1.5 that tracks its prevalence
Adaptive-VariantX-IncreasePerm	Increase	Х	Current	Like Adaptive-VariantX but with an increase of 30% over the course of 4 weeks, that remains constant thereafter
Adaptive-VariantX-IncreaseTemp	Increase	х	Current	Like Adaptive-VariantX but with an increase of 30% over the course of 4 weeks and then recedes over the course of 4 weeks

Transmission:	C = Current levels persist into the future Increase = Transmission rates increase a total of 30% over 4 weeks representing a delayed seasonally or variant driven bump, this in effect returns transmission rates to similar levels as last summer
Variant:	SQ = Status quo prevalences remain the same (e.g. no significant major driving of transmission anticipated) X = Novel sub-variant scenario, new variant emerges reaches dominance in near term, 30% immune escape
Booster:	Current = Current pace relative to 3 rd dose rollout is maintained in the future

Model Results

Previous projections comparison - Hospitalizations

- Previous projections have tracked observed hospitalizations well
- Projection from 2 weeks ago had enough growth in hospitalizations to track well
- Projection from 4 weeks ago had declines which delayed the growth
- Projection from early July anticipated a Fall-Winter rise that has tracked well

Previous round – 2 weeks ago

Previous round – mid December

Outcome Projections

Daily Hospitalized

Estimated Hospital Occupancy

Outcome Projections – Closer Look

Daily Hospitalized

Confirmed cases

UNIVERSITY *J* **VIRGINIA**

Detailed Projections: Hosps for All Scenarios

Projections by Region

Projections by District

MIVERSITY / VIRGINIA

Detailed Projections: Hosps for All Scenarios - Closer Look

Projections by District

Projections by Region

15.0

UNIVERSITY of VIRGINIA

Detailed Projections: Cases for All Scenarios - Closer Look

MIVERSITY of VIRGINIA

National Modeling Hub Updates

Current COVID-19 Hospitalization Forecast

Statistical models for submitting to CDC FluSight forecasting challenge

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

target_end_date

3-Mar-23

Hospital Admissions for COVID-19 and Forecast for next 4 weeks (CDC COVID Ensemble)

MUNIVERSITY of VIRGINIA

Current Influenza Hospitalization Forecast

Statistical models for submitting to CDC FluSight forecasting challenge

• Similar to COVID-19 case forecasts, uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for Influenza and Forecast for next 4 weeks (UVA ensemble)

Hospital Admissions for Influenza and Forecast for next 4 weeks (CDC FluSight Ensemble)

UNIVERSITY / VIRGINIA

Combined ILI and COVID-19 Hospitalizations

Ensemble methodology that combines the Adaptive with machine learning and statistical models such as:

• Autoregressive (AR, ARIMA), Neural networks (LSTM), Kalman filtering (EnKF), G-model (phase), Holt-Winters

Weekly forecasts of hospitalizations done at state level.

Models chosen because of their track record in disease forecasting and to increase diversity and robustness.

Both are regularly submitted to CDC Forecast Hubs

Combined ILI and COVID-19 Hospitalizations

National

Short-term COVID-19 and Influenza Forecasts

Flu

2500

2000

15000

1000

500

HHS Region 3 Short-term COVID-19 and Influenza Forecasts

BIOCOMPLEXITY INSTITUTE

COVID

2023 target end date

60000

4000

2000

Scenario Modeling Hub – COVID-19 (Round 16)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios

- Round 16 results published
- Moderate escape scenarios tracking best

	"Level 5" Variants	"Level 6/7" Variants
Accelerating uptake levels of reformulated boosters	*Level 5* Variants Scenario A • Variants have a 25% immune escape from BA.5.2 • Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period • No change in severity given symptomatic infection	"Level 6/7" Variants Scenario B - Variants have a 50% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the projection period - No change in severity given symptomatic infection
	Accelerating uptake levels of reformulated boosters, with coverage plateauing at 90% of flu vaccination levels by February 1st, 2023 - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates - Teams should assume increasing uptake through October and November as necessary to reach the projected February 1st, 2022 plateau	Accelerating uptake levels of reformulated boosters, with coverage plateauing at 90% of flu vaccination levels by February 1st, 2023 - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates - Teams should assume increasing uptake through October and November as necessary to reach the projected February 1st, 2022 plateau
Current uptake levels of reformulated boosters	*Level 5" Variants Scenario C - Variants have a 25% immune escape from BA.52 - Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period - No change in severity given symptomatic infection	*Level 6/7* Variants Scenario D - Variants have a 50% immune scape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the projection period - No change in severity given symptomatic infection
	Current uptake levels of reformulated boosters, with coverage plateauing at booster 1 levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates	Current uptake levels of reformulated boosters, with coverage plateauing at booster I levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates
	 Based on current rates, plateau date is flexible as long as it occurs before the end of the simulation (Teams can adjust rates up if needed to achieve adequate coverage by target date) 	- Based on current rates, plateau date is flexible as long as it occurs before the end of the simulation (feams can adjust rates up if needed to achieve adequate coverage by target date)

https://covid19scenariomodelinghub.org/viz.html

Projected Incident Hospitalizations by Epidemiological Week and by Scenario for Round 16 - US

Double-click on a model name to only display it. Click on a model name to remove it or add it from the pice directory of the pice

the pick display. UTA-ImmunoSEIRS UVA-adaptive Ensemble_LOP_untrimmed Zoom in the graph by click and drag (double-click to zoom-out)

Scenario Modeling Hub – Influenza (Round 3)

to zoom-out)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios

- All rounds so far have explored the combination of a prior immunity axis and a vaccine effectiveness axis
- Round 2 and 3 are identical in design (Round 3 ٠ cutoff December 3rd)

	Optimistic flu prior immunity	Pessimistic flu prior immunity	
High Vaccine Effectiveness	Scenario A Optimistic flu prior immunity _{- No} impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - Same amount of prior immunity as in a typical, pre-COVID19 pandemic prior season.	Scenario B Pessimistic flu prior immunity Substantial impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - 50% lower immunity than a typical, pre- COVID19 pandemic season. 	
	High Vaccine Effectiveness - VE = 50% against medically attended influenza illnesses and hospitalizations (comparable to 2015-16 season).		
Low Vaccine	Scenario C	Scenario D Ressimistic flu prior immunity	
Lifectiveness	COVID-19 pandemic on prior immunity - No impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - Same amount of prior immunity as in a typical, pre-COVID19 pandemic prior season.	Substantial impact of missed flu seasons due to the COVID-19 pandemic on prior immunity* - 50% lower immunity than a typical, pre- COVID19 pandemic season.	
	Low Vaccine Effectiveness - VE = 30% against medically attended influenza illnesses and hospitalizations (comparable to 2018-19 season).	Low Vaccination Protection - VE = 30% against medically attended influenza illnesses and hospitalizations (comparable to 2018-19 season).	

https://fluscenariomodelinghub.org/viz.html

Projected Incident Hospitalizations by Epidemiological Week and by Scenario for Round 3 - US (- Projection Epiweek; -- Current Week)

Double-click on a model name to only display it. ---- Observed Incident Hospitalizations CDDEP-FluCompModel ----- JHU_IDD-CovidSP ----- MOBS_NEU-GLEAM_FLU Click on a model name to remove it or add it from the plot display.

– NIH-FluD — PSI-M1 — USC-SIkJalpha — UT-ImmunoSEIRS — UVA-EpiHiperFlu — UVA-FluXSim — Ensemble_LOP Zoom in the graph by click and drag (double-click

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations from COVID-19 continue to decline
- Case rates and hospitalizations from Influenza are very low

Model Updates

- Model updated to fit hospital admissions as opposed to cases
 - New technique used to determine hospitalization to infection rate
- Projection model updated this week, two non-specific scenarios related to increases in transmissibility.
- Boosted transmissibility can generate new surge in activity which does not exceed levels from Summer of 2022

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

