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Abstract

This paper describes EpiHiper, a state-of-the art high performance computational modeling frame-
work supporting epidemic science. The EpiHiper modeling framework permits custom disease
models and can simulate epidemics over dynamic, large-scale networks, while supporting modula-
tion of the epidemic evolution through a set of user-programmable interventions. The nodes and
edges of the social-contact network have customizable sets of static and dynamic attributes which
allow the user to specify intervention target sets at a very fine-grained level; these also permit
the network to be updated in response to non-pharmaceutical interventions such as school clo-
sures. The execution of interventions is governed by trigger conditions, Boolean expressions formed
using any of EpiHiper’s primitives and sets. Rich expressiveness, extensibility and high performance
computing performance were central design goals to ensure that the framework could effectively
target realistic scenarios at the scale and detail required to support state and federal public
health policymakers in their efforts to plan and respond in the event of epidemics. The model-
ing framework is currently being used to support the CDC scenario modeling hub for COVID-19
response. EpiHiper was a part of a hybrid high-performance cloud system that was nominated
as a finalist for the 2021 ACM Gordon Bell Special Prize for HPC-based COVID-19 Research.

Keywords: Computational epidemiology, high performance computing, social-contact networks,
Agent-based models, Programmable pharmaceutical and non-pharmaceutical interventions, public policies,
scenario modeling
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1 Introduction

Despite significant progress in medical and public
health sciences, epidemics caused by infectious
diseases continue to have a global impact. The
ongoing COVID-19 pandemic serves as a grim
reminder of the significant social economic and
health impacts of pandemics. Society, businesses,
and health systems worldwide are struggling in
their response to contain the COVID-19 pan-
demic. Computational and mathematical models
have proven useful in planning and responding
to epidemics in the past. Their use has steadily
increased in the last two decades as policy mak-
ers and epidemiologists seek to study a range
of questions, including, studying what-if scenar-
ios, forecasting, assessing diverse intervention
strategies and supporting logistics. COVID-19
pandemics saw extensive development and use of
computational models to support policy makers
and epidemiologists. The models developed range
from descriptive, for example, static estimates of
correlations within large databases, to generative,
for example, computing the spread of different
kinds of contagions via person-to-person interac-
tions through a large population––these include
the spread of a disease, as well as (mis)information
and fear about the disease.

Networked Epidemiology. Compartmental
mass action models have been used to study
epidemic dynamics and complex interventions for
over a century. They have been the cornerstone of
epidemic science and have been used due to their
simplicity, underlying theory and computational
tractability. An alternative approach to represent
epidemic processes and interventions is to use
networks to explicitly represent the underlying
social contact network between individual agents.
Such a representation allows us to capture the
underlying heterogeneity of the contact structure,
and also allows us to formally and succinctly
capture individual behaviors and interventions.
Network-based models have become increasingly
popular over the last fifteen years as policy mak-
ers seek to develop targeted policies and response
strategies. Nevertheless such models are compu-
tationally intensive and thus naturally motivate
the use of high performance computing for imple-
menting these models.

EpiHiper. In this Resource, we present Epi-
Hiper which is a high performance computational
modeling framework supporting epidemic science
and that addresses many of the challenges listed
in [1]. This framework builds on our earlier work,
first published in [2] and subsequently [3–8]. The
design of EpiHiper integrates four major com-
ponents as illustrated in Figure 1: (i) a labeled,
time-varying social contact network over which
contagions spread, (ii) fully customizable disease
models capturing disease transmission between
hosts as well as within-host disease progres-
sion; (iii) user-programmable interventions cover-
ing both pharmaceutical and non-pharmaceutical
ones; and (iv) the discrete time, parallel simulator
architected to take full advantage of modern high
performance computing (HPC) hardware. This
modeling framework has been used extensively
throughout the ongoing COVID-19 pandemic by
directly supporting planning and response efforts
by our group to support state, local, and federal
authorities.

The use of EpiHiper has been demonstrated
during the last year in our work with the COVID-
19 Scenario Modeling Hub1 where it has been
used for six rounds, where each round presented
several challenges. The modeled scenarios range
from limited vaccine supply [9], reduced non-
pharmaceutical interventions (NPIs), emerging
new variants in early 2021, vaccine hesitancy, wan-
ing immunity, and childhood vaccination in late
2021 [10]. Some of this work formed the basis
for our submission to the 2021 ACM Gordon
Bell Prize – the paper was selected as a finalist
in the category of High Performance Computing-
Based COVID-19 Research. Recently EpiHiper
was used to support the White House US-UK
challenge to develop privacy enhancing technolo-
gies [11, 12].

Do we need yet another modeling frame-
work for computational epidemics? Our
group has been developing data-driven, compu-
tational modeling frameworks in support of net-
worked epidemiology for close to two decades [2].
Subsequent efforts by us include [3–8], that of
others [13–15], and recent work related to COVID-
19 planning and response including [16–26]. In

1https://covid19scenariomodelinghub.org/

https://covid19scenariomodelinghub.org/
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Fig. 1 The EpiHiper framework integrates disease models with parameters from peer-reviewed literature, highly detailed
interventions matching CDC and public health guidelines, and detailed populations and contact networks to generate
simulation outcomes and analytics for virtually any scenario involving COVID and influenza-like diseases.

this body of work, smaller regions have been ana-
lyzed using detailed models, and larger regions
using aggregate models. With the exception of the
work reported in [21], we are not aware of any
epidemic models for COVID-19 that can handle
complex interventions, disease progression mod-
els and national-scale networks. The work in [21]
is largely focused on the United Kingdom (UK),
although basic results were provided for the US as
well.

Despite there being many other frameworks for
computational epidemiology, there are also many
shortcomings which the EpiHiper project directly
addressed through model design and architecture.
Some of the key aspects are: scalability: very
few existing systems scale to the network sizes
considered which are of the order 100 million
nodes. Systems that claim scalability (but also
other systems) often have limited capabilities and
expressiveness in terms of disease modeling and
interventions. Typically, disease models and/or
interventions are hard-coded, effectively making
it rather challenging for others to add or extend
any of these elements as this will require detailed
knowledge of the model and its implementation.
While such designs may have been the result of
having to support policy decisions for COVID-19

in near real-time, it renders frameworks inflexi-
ble, frequently requiring extensions to the code
base whenever a new scenario must be addressed.
A framework greatly benefits by having external
specifications of both disease models and their
interventions. Not only does this approach sup-
port more transparent peer-review of models and
interventions, it also avoids the inherent risk of
introducing model errors as well as coding errors
through frequent code changes. We would argue
that having these model components specified
externally will typically lead to a more flexible
framework that can respond more rapidly and
more reliably to the needs of public policy makers.
One hope with this paper is that it will set the tone
for researchers to precisely describe their modeling
frameworks in sufficient details to ensure a basic
level of reproducibility2 along with the advantages
of this in support of validation (e.g., [28, 29].)

2By reproducibility we mean the ability for other researchers
to re-implement the model using knowledge obtained from
the original paper, possibly in a different simulation tool or
programming language than the one reported, and through
simulation verify the results reported in the study [27].
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2 Results

Summary of methods. In the following we
describe the components of the EpiHiper frame-
work as illustrated in Figure 1.

Social contact network. The EpiHiper modeling
framework simulates epidemic spread over a social
contact network of agents (nodes) where each node
has labels (or attributes) encoding properties of
that agent. The labels generally include social
and demographic factors, but may include behav-
ioral attributes as well as disease attributes (e.g.,
vaccination history). In the network, an edge cap-
tures the possibility of transmission between its
end-points; edges are also labeled (e.g., contact
duration, activity types of the two nodes.) While
the synthesis of such contact networks is out of
scope of this paper, a brief description is provided
in the supplementary material.

Disease model. The disease model in the Epi-
Hiper framework is fully programmable, and
is split into disease transmission and within-
host disease progression. The former captures the
transmission aspect of the disease, while the latter
captures all other aspects of the disease evolution
over a set X = {X1, X2, . . . , Xm} of custom health
states. As the COVID-19 pandemic progressed,
the within-host models became increasingly more
complex: asymptomatic states were important at
early stages, then followed the need to represent
vaccine uptake which would impact for example
the ability to transmit and the ability to become
infected. Yet more states were necessary to cap-
ture immune waning and to account for multiple
strains/variants, and their cross-correlations. The
within-host model is specified externally as in
input file (JSON), and is represented internally as
a probabilistic timed transition system (PTTS).
This allows the user to specify all transitions
among health states, the probabilistic dwell time
in health states, as well as weights for transitions
in case there is more than one possibility.

For the transmission process, EpiHiper deter-
mines all propensities associated arising from
contacts between infectious nodes/people and sus-
ceptible nodes/people. This formalized through
the notion of contact configurations Ti,j,k =
T (Xi, Xj , Xk) where a susceptible person P in
health state Xi may transition to an exposed state
Xj when in contact with an infectious person P ′

in state Xk. The propensity of such a contact is
determined through a range of factors including
the disease’s state susceptibility and state infec-
tivity associated to the health states Xk and Xi,
and the infectivity scaling factor of P ′ and the
susceptibility scaling factor of P . The latter two
quantities are per-person, dynamic variables and
are often modulated in response to pharmaceuti-
cal as well as non-pharmaceutical interventions as
described below. The duration of contact is also
factored into the propensity. To determine if an
infection takes place for a susceptible person P ,
and also to whom we attribute the infection, we
apply the Direct Gillespie Method to the collection
propensities involving P and infectious people P ′

encountered within the iteration.

Interventions are central to the EpiHiper frame-
work and represent the mechanisms that allow
one to represent complex pharmaceutical as well
as non-pharmaceutical interventions. Examples of
interventions include city-scale lock-downs and
closures of various facilities, vaccinations which
may be temporally and spatially constrained
based on production schedules, test-trace-isolate,
and behavioral adaptation by individual citizens,
including mask wearing, vaccine hesitancy, and
social-distancing. Clearly, the diversity of possible
interventions is vast which underscores the impor-
tance of having a generic and flexible approach for
their representation [30]. Just as for the disease
model, EpiHiper allows to user to specify highly
custom and complex interventions as a file (JSON)
which is provided as as part of input configuration.
We believe that this is one of the unique features
of our framework. As the pandemic progressed,
this is one of main factors that allowed us to
keep up with the continuous need for implement-
ing increasingly complex interventions to support
public policy.

Informally speaking, in EpiHiper an inter-
vention consist of (i) a trigger, (ii) a target, and
(iii) a set of operations organized into procedu-
ral control structures similar to those one would
expect to find in a programming language. The
trigger determines the time step(s) for which an
intervention is executed, and the target is the set
of nodes or edges upon which the operations of
the intervention are applied. A person receiving
a vaccine, for example, can be captured by set-
ting that person’s susceptibility scaling factor to a
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suitable value depending on their attributes (e.g.,
age, NAICS code, or health state). The interven-
tion language permits an operation to take place
with a delay, can be assigned a priority to break
ties with other operations, and may additionally
be given a condition that must evaluate to true at
the time of execution lest it be dismissed.

The EpiHiper discrete time parallel simulator. In
order to support the required scale with networks
with 100 million nodes or more, EpiHiper was
designed and implemented to take full advantage
of modern HPC hardware. It can distribute an epi-
demic simulation across as many computational
nodes as is made available, and within each node it
can fully use all available cores. A significant effort
has gone into calibration and there are several sup-
ported approaches. This includes through param-
eters such as the intrinsic transmissibility and
any disease parameter and intervention parameter
such as compliance and efficacy. In [31] EpiHiper
was calibrated using a Gaussian, process-based,
Bayesian framework to fit time series data based
on confirmed cases, and in [32] EpiHiper was cal-
ibrated to fit an estimated effective reproduction
number using most recent surveillance data.

EpiHiper Use Cases. EpiHiper was devel-
oped partly in response to the ongoing COVID-19
pandemic and for the past two years, EpiHiper
has been used extensively to help inform analysts
at the US Department of Defense, the Virginia
Department of Health (VDH), and Centers of Dis-
ease control. Recently, we have begun exploring its
use to support the European Centers for Disease
control.3

In late 2020, EpiHiper was used to study the
risks of workplace outbreaks after office reopening,
the impact on neighboring communities, and to
evaluate testing, tracing, and isolation strategies.
The results were briefed to the Defense Threat
Reduction Agency. In early 2021, through our col-
laboration with the VDH, EpiHiper was used
to evaluate the effectiveness of contact tracing
and quarantine measures in Virginia. Key find-
ings were that contact tracing helped to reduce
cases, hospitalizations, and deaths, and to reach
the targeted level of case numbers much faster [32].

3Information about our ongoing efforts to support these
agencies can be found at: https://nssac.github.io/covid-19/
index.

Finally, over the last year, we have worked
closely with the COVID-19 Scenario Modeling
Hub4. EpiHiper has been used for 6 rounds now;
each round presenting its own sets of challenges. A
recent paper [33] summarizes the ensemble results
from round 7. A paper based on Round 9 is in sub-
mission. The modeled scenarios range from limited
vaccine supply [9], reduced non-pharmaceutical
interventions (NPIs), emerging new variants in
early 2021, vaccine hesitancy, waning immunity,
and childhood vaccination in late 2021 [10]. Some
of this work formed the basis for our submission to
the 2021 ACM Gordon Bell Prize – the paper was
selected as a finalist in the category of High Per-
formance Computing-Based COVID-19 Research
and will be published soon [10]. In each round,
four scenarios are defined across two axes, cho-
sen to study emerging issues and topics. Each of
these axes usually specifies two different settings
of the parameters involved, including both pes-
simistic and optimistic values. Such issues range
from vaccine availability and hesitancy, NPIs, new
variants, waning immunity, immune escape, child-
hood vaccination, and boosters. In round 12, we
focus on the impact of the Omicron variant, with
one axis on immune escape (80% and 50%), and
another on the reduction in severity of Omicron
infections relative to Delta (70% and 30%).
1. Capability in disease modeling. We have imple-
mented a PTTS to represent complex infection
and immune states of a single individual per-
taining to COVID-19 outbreak. This includes
asymptomatic state and detailed disease outcome
states (hospitalization, ventilation, and death).
We have implemented a tool that allows us to
expand the base states by age groups, and assign
age-dependent dwell time distributions to the
states and age-dependent transition probabilities
between the states. Along the SMH rounds, we
have augmented the base disease model with var-
ious vaccinated states: one-dose Pfizer/Moderna,
two-dose Pfizer/Moderna, Johnson & Johnson,
boosters, as well as a partially susceptible state
for nodes with waning of immunity obtained by
natural infection or vaccination. We have imple-
mented age-dependent protections against infec-
tion, transmission, and severe disease for nodes
with immunity (with vaccination, infection, or

4https://covid19scenariomodelinghub.org/

https://nssac.github.io/covid-19/index
https://nssac.github.io/covid-19/index
https://covid19scenariomodelinghub.org/
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waning). All these implementations are accom-
plished by specifying the health states and transi-
tions between them without changing EpiHiper
code. In round 12, the changes to our disease
model are minimal since we have already imple-
mented various vaccinated states, waning immu-
nity, the Omicron variant, and infection of Delta-
immune people by Omicron by round 11. We only
need to update the parameters to the most recent
values.
2. Capability in initialization. As the COVID-19
pandemic comes close to its third year, we choose
to start the simulations from December 2021.
EpiHiper allows us to sample a given number
of people from age-stratified distributions at the
county level, and set them to recovered states
for prior infections, vaccinated states for prior
vaccinations, partially susceptible states for peo-
ple with waned immunity, and infected states for
active infections in December 2021. This capabil-
ity allows us to start the simulation from a given
snapshot with the set states for all nodes and the
network. Related is a feature of EpiHiper to save
a snapshot of nodes and network states during
the simulation and to allow resumption from that
snapshot.
3. Capability in intervention modeling. In
round 12, we have implemented both non-
pharmaceutical interventions (NPIs) and
pharmaceutical interventions (PIs). The NPIs
include (i) individual-level preventive behavior
(e.g. mask wearing) with 25% compliance; (ii)
individual-level social distancing (reducing daily
non-essential activities) with 15% compliance;
(iii) universal school closure due to winter break;
and (iv) household-level voluntary home isolation
of symptomatic infections with 75% compliance.
For NPI (i), we change the infectivity parameter
of compliant nodes. For NPI (ii), we change the
activities of compliant nodes and remove their
contacts with other people during the reduced
activities. For NPI (iii), we temporarily disable
all contacts in school. For NPI (iv), we tem-
porarily disable contacts of isolated nodes with
people outside their households. The PIs include
various vaccinations, which mainly move nodes to
appropriate vaccinated states with reduced sus-
ceptibility, infectivity, and reduced probability to
transition to severe outcomes. The interventions
are triggered by time (e.g. school closure) or the

global/local state, targeting a defined set of nodes
or network edges, and can have a compliance, a
delay in action, and the efficacies of the changes
on node attributes or edge weights.

2.1 Scenario modeling hub (SMH)
round 12

Here we describe how EpiHiper was used to sup-
port round 12 of the CDC COVID-19 Scenario
Modeling Hub. More details of the round can
be found at https://covid19scenariomodelinghub.
org/archive.html. The main purpose of this round,
conducted at the beginning of 2022, was to eval-
uate the impact of the Omicron wave, on the
disease outcomes in the first three months of 2022.
The design has two axes: (i) the immune escape
axis has a higher level which assumes that nodes
with prior immunity (natural or vaccinal) of pre-
Omicron variants are 80% more likely to be
infected by Omicron than by any pre-Omicron
variant, and a lower level which assumes 50% for
this difference; (ii) the severity axis has a pes-
simistic level which assumes that the risk of severe
outcomes, including hospitalization and death, of
a node infected by Omicron is 70% of that if the
node had been infected by Delta, and an opti-
mistic level which assumes 30% for the same ratio.
Figure 2 shows the 2x2 design with two axes and
four scenarios in Round 12.

Fig. 2 Design of scenarios in CDC COVID-19 Sce-
nario Modeling Hub Round 12 [34].

Our disease model includes susceptible, vac-
cinated, exposed, symptomatic, asymptomatic,
hospitalized, recovered, and decreased states,

https://covid19scenariomodelinghub.org/archive.html
https://covid19scenariomodelinghub.org/archive.html
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with age-stratification. It models two COVID-19
strains: one represents all pre-Omicron variants,
the other corresponds to Omicron. We model
immunity waning explicitly in the disease model
with a partially susceptible state. A node in either
recovered state (natural immunity) or vaccinated
state (vaccinal immunity) is moved to the par-
tially susceptible state after a random dwell time,
sampled from an exponential distribution with
mean of 6 months. Protection on nodes in the
partially susceptible state against infection, com-
paring with nodes in the fully susceptible state,
is 60% (or 40%) for those under 65 years old
(or 65+ years old); protection against severe dis-
ease is 90% (or 80%) for under 65 (or 65+).
Figure 3 shows a simplified illustration of our
disease model. Note that it is expanded for age
stratification as well as for two virus strained in
the actually implemented model.

Fig. 3 Disease model used for EpiHiper simulations
in CDC COVID-19 Scenario Modeling Hub Round 12.
Note that the figure shows the states of a node of
age group i; all age groups have the same states and
transitions but the parameters, including susceptibil-
ity, infectivity, dwell time, and transition probability
may be different between different age groups.

We modeled the same nonpharmaceutical
interventions (NPIs) in all scenarios and across
all states: (i) A fraction (15%) of the population
chooses to reduce non-essential (shopping, reli-
gion, and other) activities. (ii) All K-12 schools
are closed from late-December 2021 to the begin-
ning of 2022; and face masks are used in school
while schools are open. (iii) A fraction (75%) of
symptomatic people choose to self-isolate them-
selves at home. Note that the compliance rates to
(i) and (ii) are assumed to remain the same during
the projection period, but EpiHiper can be con-
figured to model time varying NPIs if supporting
data is available.

The simulations are initialized by data-driven
assignment of nodes’ initial health states. Based

on county level data of prior confirmed cases, age
specific case ascertainment rate, state level data of
prior vaccinations, and waning of immunity (nat-
ural and vaccinal), we initialize each individual
to one of naively susceptible, vaccinated, partially
susceptible (with waned immunity), and non-
susceptible (currently or recently infected) states,
depending on whether and when the individual
is/was infected and/or vaccinated.

For each state, we calibrate the transmissibil-
ity parameter in our disease model targeting the
state level estimated effective reproduction num-
ber from the most recent confirmed cases. We
run EpiHiper simulations for each state sepa-
rately, and combine the outputs to get results
of the whole US. The simulations produce daily
infections, hospitalizations, and deaths; and each
simulation runs for multiple replicates. We aggre-
gate daily data to get weekly data and compute
distribution of projection for each target from the
multiple replicates.

Our projections show that at national level
confirmed cases peak in late January (best sce-
nario) to early February (worst scenario), followed
by a quick drop to a level that will last for a
while. Among the four scenarios, even the best
one (optSev lowIE: optimistic severity, low immune
escape) might reach 3000 cases per 100K in the
peak week, possibly stressing the testing capacity.
Similar trends are projected for hospitalizations,
with a less dramatic gap between current and
previous peaks comparing with cases, due to less
severe outcomes of Omicron infections and pro-
tection provided by vaccines. These are shown
in Figure 4. We also project significant hetero-
geneities between states regarding peak size and
timing in cases and hospitalizations.

Performance assessments and comparisons.
There are several other frameworks for computa-
tional epidemiology, and we have summarized key
features of some that we consider most related to
EpiHiper in Table 1. Additional details are pro-
vided in the supplementary material for these and
other systems.

In Table 1, a model or intervention entry
marked as ’fixed’ means that this feature is hard-
coded. While a user of the software may add addi-
tional models/interventions, this would require
adequate coding skills in the programming lan-
guage that was used, and sufficient insight into
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Fig. 4 CDC COVID-19 Scenario Modeling Hub Round 12 projection by EpiHiper model for cases and hospital-
izations under four hypothetical scenarios in the first three months of 2022. The curves show median of projections
and the ribbons show 95% projection interval.

Framework Epidemic
model

Interventions Networks Language Open License Scaling/ Paral-
lelization

Covasim [18] Single, fixed,
parameterized

Several, hard-
coded interven-
tions included

SynthPop +
random graphs

Python Yes CC BY-SA 4.0 Single node/s-
ingle core

Covid-Sim [21] Multiple, fixed Multiple, fixed Layered
networks

C++ Yes GPLv3 Single node/-
multiple
core

FRED [15]5 Multiple,
fixed,
un-coupled

Multiple, fixed Location-based
with uniform
mixing per
location

C++ Yes Unclear (open version) Single node/-
multiple
cores

EpiHiper User-
programmable,
externally
specified

User-
programmable,
externally
specified

General,
directed,
labeled
networks

C++ No Apache ver. 2.0 Multiple node
and multiple
core

Table 1 An overview of key features for related epidemic simulation models and frameworks.

the implementation. A network model is ’layered’
if it is constructed using layers (e.g., household
layer, school layer, work layer) where nodes are
joined within layers to satisfy, e.g., data from
a mixing matrix (e.g., [35–37]); it may be done
according to demographics (e.g., age bins). While
SynthPop [38], which uses the layered network
synthesis approach, offers networks that can be
explicitly examined, many epidemiological simu-
lation models construct such networks on the fly,
thus making it hard to assess the networks’ prop-
erties or adequacy. An epidemic model is location
based if it tracks peoples’ visits to locations, con-
structs the contacts at each location, and runs the
epidemic process over the induced sub-networks
(e.g., FRED [15], EpiSimdemics [4]).

Here we focus on Covasim [18] and Covid-
Sim [21]. Since FRED [15] is location-based, and
also since the open version of FRED is rather
dated, we omit FRED from comparisons. All
these, and other system such as the Google and
Open ABM Project, COVID-19 ABM [39,

40] are described in more detail in the supplemen-
tary material.

By software design, the current version of Cov-
asim only supports epidemic runs on a single
core. However, the framework can run multiple,
independent model instances distributed across
the cores of a single computing node (using
the Python sciris library). We note that Cov-
asim supports dynamic rescaling where an agent
in the simulation represents N (the scaling fac-
tor) individuals, and may thus permit additional
scaling for scenarios where this is appropriate,
see also [29]. Covid-Sim is a threaded applica-
tion and may therefore use all the cores on a
single computing node. Its software design thus
provides inherently better computational scaling
than that of Covasim. However, for both Cov-
asim and Covid-Sim, being limited to a single
computational node,there is currently no mean-
ingful way of comparing their scaling properties
(e.g., with respect network size) to those of Epi-
Hiper. This becomes even more evident for the
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complex classes of interventions typically needed
when supporting the scenarios posed by policy
makers. Such interventions frequently require a
large set of static and dynamic attributes for each
person in the simulation model. This imposes a
large memory footprint, severely limiting single
node architectures.

EpiHiper scaling. Of more practical interest
than a standard scaling study, is an analysis of
how the choice of disease model, interventions, and
their complexities impact computation time along
with their scaling of memory requirements. In
the supplementary material (Section D) we have
provided a detailed analysis of all these aspects
for a computational experiment run on the syn-
thetic population of Virginia (US). In summary,
the eight computational experiments (labeled I
through VIII) used the disease models as spec-
ified in Supplementary Material Table 4 where
the intervention overview is described in Table 5,
and the correspondence between experiments and
sets of interventions are provided in Table 6.
For reference, each experiment was conducted on
compute nodes with dual CPUs having 20 cores
each and 375 GB total memory for its specified
collection of interventions using 15 replicates.

As shown in Figure 5, the impact of interven-
tion complexity on running time is very clear. In
the Supplementary Material Section D, we have
also provided Figure 20 which gives a scaled ver-
sion analogous to Figure 5 but in this case taken
across all US states using a scenario (different
than the above) that used to support the Scenario
Modeling Hub.

Fig. 5 Impact of intervention complexity on computa-
tion time for experiments I–VII (see text) factored by
the main simulation tasks of ■ intervention, ■ trans-
mission, ■ update, ■ synchronization, ■ output, and
■ initialization. The unit is seconds.

In Figure 6 we have provided a scaling analysis
using the synthetic populations and networks of
the U.S. states for one of our vaccine studies [9].
As we see, the running time scales more or less
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Fig. 6 EpiHiper running time as a function of network
size for the U.S. states. Top (Bottom): running time as a
function of the number of nodes (edges).

linearly with node- and edge counts.
Performance scaling and computational
resources. We performed code profiling to deter-
mine whether the chosen partitioning strategy is
feasible for different problem sizes. Figure 20 indi-
cates that increasing the number of cores by a
factor of 60 (from 2 for small states (AK, DC, MT,
ND, SD, VT, WY) to 120 for CA) only increases
the synchronization by a factor of 8 (3.23%–
25.2%), indicating that inter-processes communi-
cation scales approximately with

√
N where N

is the number of cores supporting the chosen
partitioning strategy. The memory and run time
requirements for different problem sizes scale lin-
early with the problem size. In fact we found
that the memory requirements are changing only
minimally with varying disease model and inter-
vention complexity. The scaling of the run time
though always linear is very much dependent on
the complexity of both.
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Fig. 7 Scaling of state size vs memory requirements
for one of our vaccine studies [9].

3 Discussion

We believe a key factor in ensuring that the
broader scientific community trusts epidemic
models is to base the software on a formal mathe-
matical model that is published in full. This serves
two essential purposes. First, it gives the necessary
separation of concern between the model and the
code, thus helping avoid the situation where the
code becomes the de facto formal model. The lat-
ter situation poses serious challenges for scientific
reproducibility, peer review, as well as model vali-
dation and code verification. (Is the model wrong?
Or are there code errors?) Second, it allows us
to take a step towards producing reproducible
epidemic modeling environments, see [41–44] for
further discussion. Computer Scientists have advo-
cated this approach for a long time as they have
developed complex software systems.

Design principles. The design of the EpiHiper
modeling framework and its software architec-
ture adhered strictly to the above principle, and
was guided by a careful consideration balanc-
ing (i) the expressive power required to flexibly
capture most person-to-person transmissible dis-
eases and the interventions needed to support
actual public health policy formation, and (ii)
computational complexity and running times of
the software to ensure adequate scaling, and (iii)
the time required to construct, test and validate
the implementation. As a result, the intervention
language used by EpiHiper (see the Methods
section) does not offer all the functionality and

constructs that one will find in programming lan-
guages like Python or C++, but have so far been
able to fully support all requirements in our work
with federal and state agencies. An additional
design decision that we consider essential is that
EpiHiper’s disease models and interventions are
specified externally. Thus user can provide their
own models and provide them to EpiHiper as
part of the input data. Not only does this design
eliminate the need for recompiling any code as new
disease models or interventions are introduced,
but it also helps support scientific reproducibility
as well as peer review. As can be seen in Table 1,
this is not a typical design.

Scaling. EpiHiper was designed with performance
as one of the key goals in a concerted effort
seeking a precise and rich mathematical model
as well as an implementation able to take full
advantage of current software architectures. As
illustrated in the Results section, EpiHiper can
handle a very rich set of epidemic models along
with advanced intervention capabilities capable of
accommodating what is needed to inform public
policy experts and their scenarios. Disease mod-
els and interventions are cleanly specified, and
can easily be shared or reused in a manner that
directly supports peer review.

As detailed in Section 2, we have not
attempted to assess how large networks EpiHiper
can handle or push computational boundaries.
While that certainly has value, the major driver
of computational complexity is generally governed
by the collection of interventions that are applied.
EpiHiper has routinely been used for simula-
tion over our California networks which have more
than 30 million nodes and close to 700 million
edges. While we may eventually benchmark Epi-
Hiper for network scaling using some standard
set of interventions, such results may not be of
much practical value to policy formation. The lin-
ear scaling in terms of network size (node- and
edge counts) of Figure 6 and computer memory
(Supplementary Material Figure 7) leaves us con-
fident that we can handle networks of the scale of
the entire U.S. population and beyond.

Technology choices. The EpiHiper simulation
model can run on any modern computer rang-
ing from laptops to super-computers. Naturally,
larger networks will require matching hardware.
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The software design uses standard, open tech-
nologies, major examples being MPI [45] and
OpenMP [46] for computing, Postgres for the per-
son trait database, and Frictionless [47] and JSON
for specification of input data. This ensure that it
can be deployed on virtually anywhere.

Data dependencies. EpiHiper relies on fairly
advanced input data: constructing realistic pop-
ulations and networks for a region is generally a
large effort in itself.

4 Methods

Here we describe the EpiHiper disease model-
ing capability, the structure of the programmable
interventions, and the implementation of the epi-
demic simulator. A basic example is given along-
side the description to help illustrate the con-
cepts. We remark that the EpiHiper framework
is “abstract”, in the sense that it can capture gen-
eral, intervention-adjusted, contagion processes
propagating over a collection of entities connected
by a network structure, not just people and
COVID-like diseases.

The EpiHiper Disease model is fully
programmable, and starts from a set X =
{X1, X2, . . . , Xm} of health states. The disease
progression, which captures the disease evolution
once a person becomes infected, is represented
using a probabilistic timed transition system
(PTTS) over X . These are an extension of finite
state machines with the additional features that
state transitions are probabilistic and timed.

As an illustration we consider a hypothetical
case of a classic influenza (or COVID-like) out-
break in Albemarle County, Virginia. Here we use
the set

X = {S,E, Isymp, Iasymp,R}

to encode the five health states suscep-
tible (S), exposed (E), infectious and
symptomatic (Isymp), infectious and asymp-
tomatic (Iasymp), and recovered (R) with the
combined transmission and progression diagram

as follows:

Isymp

##
S +3 E

p=0.67

;;

p=0.33

##

R

Iasymp

;;

Apart from the double arrow/edge S +3 E
which specifies transmission, each edge corre-
sponds to a transition in the disease progression
model. We note that disease progression from
health state E to Isymp is twice as likely as pro-
gression from E to Iasymp (or 0.67/0.33 to be
precise). The dwell time distribution for both tran-
sitions out of the state E, which we denote by
edges (E, Isymp) and (E, Iasymp), are

{0 : 0.1; 1 : 0.2; 2 : 0.6; 3 : 0.1} ,

meaning that, e.g., the probability of a dwell time
of duration 2 (days) is 0.6. Similarly, the dwell
time distributions for the transitions (Isymp,R)
and (Iasymp,R) out of states Isymp and Iasymp
are both

{3 : 0.3; 4 : 0.4; 5 : 0.2; 6 : 0.1} .

Note that a dwell time distribution is associated
with an edge (health state transition) and that the
unit of time is one iteration, which in this example
equals one day.

To describe the disease transmission model, we
refer to Figure 8, which shows a network where

P 0 P

X
k

X
i

X
j

P 0 0

e

e 0

Fig. 8 An example network for EpiHiper with agents/n-
odes P , P ′ and P ′′. Here, the infectious person P ′ may
infect the susceptible person P , who as a result may
transition from health state X to an exposed state X′.

a susceptible person P is in contact with infec-
tious persons P ′ and P ′′. Focusing on the the
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pair (P ′, P ), we combine the state susceptibil-
ity and state infectivity of their respective health
states Xk and Xi with the infectivity scaling fac-
tor of P ′ and the susceptibility scaling factor of P
to form the propensity associated with the con-
tact configuration Ti,j,k = T (Xi, Xj , Xk) for the
potential transition of the health state of person
P to Xj as:

ρ(P, P ′, Ti,j,k, e) =
[
T · τ

]
× we × αe× (1)[

βs(P ) · σ(Xi)
]
×
[
βi(P

′) · ι(Xk)
]
× ω(Ti,j,k)

Here, T is the duration of contact for the edge e =
(P ′, P, w, α, T ), w is an edge weight, and α is a
Boolean value indicating whether or not the edge
is active (e.g., not disabled because of an ongoing
school closure).

In the example, there are two transmission
configurations (1 susceptible state × 2 infectious
states) are

Ts = T (S,E, Isymp) and Ta = T (S,E, Iasymp) ,

both having the default weight of ω = 1.0. Regard-
ing infectivity, people in either of the states Isymp
and Iasymp can transmit infections, with the
asymptomatic reduction in infectivity being 60%
and thus ι(Iasymp) = 0.40 while the susceptibil-
ity and infectivity values of all other health states
have the default value of 1.0

For each time step, and for each person P ,
the propensities ρ from Equation (1) are collected
across all edges e and contact configurations T as
the sequence ρP = (ρ(P, P ′, T, e)P ′,T,e). To deter-
mine if P becomes infected is modeled using a
Gillespie process [48, 49]; the person P ′ to whom
one attributes P falling sick is also determined as
part of this step. The full details are given in the
supplementary material.

Disease model assumptions: it is assumed that
(i) propensities for a person are independent
across contact configurations, and (ii) that during
any time step no person can change their health
state. The first assumption is quite common and
not unreasonable for the contact networks that
are used. The second assumption can always be
accommodated by reducing the size of the time
step. Its real purpose is to ensure order invariance
of contacts within a time step, thus providing the
required guarantee for algorithm correctness.

Parameter Description
P , P ′ Persons/agents/nodes
Xi Health state i
σ(Xi) Susceptibility of health state Xi

ι(Xi) Infectivity of health state Xi

βσ(P ) Susceptibility scaling factor for
person P

βι(P ) Infectivity scaling factor for
person P

we Weight of edge e = (P, P ′)
αe Flag indicating whether the

edge e is active
T (Xi, Xj , Xk) Contact configuration for a

susceptible transition from Xi

to Xj in the presence of
state Xk

ωi,j,k Transmission weight of contact
configuration T (Xi, Xj , Xk)

τ Transmissibility
ρ(P, P ′, Ti,j,k, e) Contact propensity

Table 2 EpiHiper core model parameters.

EpiHiper interventions. An EpiHiper
intervention consists of a trigger condition C, an
intervention target T , and a collection of opera-
tions that are applied against the variables asso-
ciated to the elements of the target, or against
variables not attached to target entities (through
the once construct). The trigger condition C
is a Boolean expression formed using EpiHiper
primitives (see Table 3) and sizes of sets; the inter-
vention target is a set consisting of vertices or
edges, and is formed using predicates over the
same elements as for the triggers; the operations
are organized into the control blocks specified in
Listing 1.

Semantics of intervention blocks. The opera-
tions within the once block are executed whenever
the trigger condition C holds, even if the target
set is empty. It is used to set variables that are
not attached elements of the intervention target
(e.g., the number of available vaccines on a given
day). All operations within the foreach block are
applied to the matching variables of the target ele-
ments. Aspects such as compliance are handled
through the sampling block: several sampling
methods are supported where operations applied
to the sampled and nonsampled sets. We note
that recursive application of operation ensembles
are supported in the sampling control structure.

Semantics of operations. The syntax of opera-
tions is provided in Listing 1. In an operation, a
variable is assigned the value of an expression, the
assignment being scheduled for execution using
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Listing 1 The EpiHiper block structure for operations

operat ionEnsemble :=
once

<ope ra t i onL i s t>
foreach

<ope ra t i onL i s t>
sampling <s amp l i ngSpec i f i c a t i on>

sampled
<operationEnsemble>

nonsampled
<operationEnsemble>

s amp l i n gSpe c i f i c a t i on :=
(

relativeSampling ( individual | \
group ) <percentage> |

absoluteSampling <i n t ege r>
)

op e r a t i onL i s t := <operat ion>+

operat i on := <var i ab l e>
<operator> <expres s i on> \

delay(< i n t ege r >) \
[ priority(< i n t ege r >) ] \
[ condition(<boo l exp r e s s i on >) ]

operator := ( = | ∗= | /= | += | −= )

a non-negative offset delay relative to the cur-
rent time step. The assignment may optionally
be assigned an integer priority (default value 0)
and a condition (default value True) which is a
Boolean expression that must hold at the sched-
uled execution time for the assignment to be
carried out.

Operation execution. All operations enter a
priority queue which is sorted first by scheduled
execution time and second by priority. Within a
time step, all operations scheduled then are pro-
cessed in sorted order. Collections of operations
of equal priority are processed in random order.
Finally, an operation is executed if only if its
condition is true at the time of processing.

A note on processing order of interventions.
When designing interventions, one needs to pay
careful attention to cases where order of oper-
ations may matter. It is the responsibility of
the person constructing the (set of) interventions
to ensure, through specification of priorities and
conditions, that the order becomes as they intend.

Returning to the example, we showcase two
interventions: school closures, and vaccination.

(a) School closure. Schools will be closed each
day for which ≥ 10% of the population are infec-
tious (health states Isymp or (Iasymp) at the
beginning of the day). While one may argue that
this is an unrealistic condition (unless there is a
very vigorous testing mandate), it will serve the
purpose of illustration.

Trigger condition. Using X(p) to denote the
health state of p ∈ V and N for the population
size, the trigger Ca can be expressed as:∣∣{p ∈ V | X(p) ∈ {Iasymp, Isymp}

}∣∣/N ≥ 0.10

Target: for this intervention, the target set Ma is a
subset of the edge set E. Writing a (directed) edge
as e = (v, v′) and denoting by Ae(v) and Ae(v

′)
the activity of v and v′ at their time of con-
tact encoded by the edge e, the target set can be
expressed as:

Ma = {e ∈ E | Ae(v) = School or Ae(v
′) = School}

Operation ensemble:

foreach // Note: "e in M" is implicit

active = 0, delay(0), priority(0)

active = 1, delay(1), priority(1)

The operation ensemble will deactivate any
edge associated to a school activity, and will do
so immediately (current day). It will also sched-
ule a school re-opening on the following day by
re-activating the edge with a delay of 1. Note,
however, that if the trigger condition holds on the
following day as well, this intervention will be exe-
cuted again. In this case, the edge deactivation of
the next day will take priority (technically, it will
overwrite values) over the edge reactivation that
is scheduled on the current day. This illustrates
an essential design point : by allowing delays and
priorities, we can avoid the the bookkeeping of
tracking which entities and/or their variables were
modified, as well as when they may need to be
restored.

(b) Vaccination. In this case, we have a phar-
maceutical intervention where people of age ≥
60 are advised to accept a vaccine offered on
day 5, with a compliance rate of 90%, the vaccine
being 80% efficacious causing an 80% reduction in
susceptibility and infectivity. The vaccine becomes
effective two days following inoculation.
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Trigger condition. In this case, we simply use
the EpiHiper observable time to express the
condition as

Cb : time = 5 .

Target set. In this case, the target set consists of
vertices/people:

Mb = {v ∈ V | age(v) ≥ 60}

Operation ensemble.
sampling relativeSampling individual 90.0

sampled // sampled subset of M_b

beta_i *= 0.20, delay(2)

beta_s *= 0.20, delay(2)

nonsampled

{}

A complete examples would also need to
include initialization (implemented as interven-
tions triggered at the start of the simulations) and
would typically be explored through an experi-
mental design.

Synthetic populations and contact net-
works. EpiHiper uses the notion of a digital twin
of the population and a social contact network of
a region to describe the people (vertices) and their
interactions (edges), see [50]. The synthesized pop-
ulation consists of a base population partitioned
into households with demographic attributes (e.g.,
age, gender, worker status, NAICS), and house-
hold attributes such as household income. These
attributes are provided to EpiHiper via its person
trait database. Based on demographic attributes,
each person is matched with a detailed activity
sequence (e.g., from NHTS) covering their activ-
ities on a typical day, and each such activity is
assigned a location using an algorithm outlined in
the supplementary material.

Using the assignment of all people’s activities
to locations (which we refer to as the person-
location graph GPL) in combination with a con-
tact model at each location, we construct a social
contact network GP with nodes VP (people) and
edges EP denote proximity and depends on the
specific disease under consideration. Each node
v ∈ VP has a number of configurable attributes
specific to the questions being studied; similarly,
each edge e ∈ EP has associated a set of con-
figurable attributes that minimally includes the
target (resp. source) person ID, the target (resp.
source) person activity type, and the duration of
contact. The main components of the synthetic

populations and its network are illustrated in
Figure 9.

Software design and implementation. The
EpiHiper software architecture is a hybrid
MPI/OpenMP design, and is implemented in
C++ for high performance. The contact net-
works can be represented either as text or binary
files, with the option to perform pre-partitioning
for the desired target combinations of compute
nodes and cores. A custom Frictionless [47] header
encodes optional custom fields for the network.
These customizable demographic traits attached
to each person are handled as a software Postgres
database. This database, which is typically shared
among multiple computational experiments, has
been finely tuned to handle a large number of
simultaneous queries, particularly as they occur
at the initialization stage of large EpiHiper com-
pute jobs. Details regarding the EpiHiper algo-
rithm as well as correctness are provided in the
supplementary material.

5 Code availability

The EpiHiper code base can be accessed at
https://github.com/NSSAC/EpiHiper,

and is made available under the MIT license:
https://mit-license.org/
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Oron, A.P., Wenger, E., Famulare, M.,
Klein, D.J.: Covasim: an agent-based model
of COVID-19 dynamics and interventions.
medRxiv (2020)

[18] Kerr, C.C., Stuart, R.M., Mistry, D., Abey-
suriya, R.G., Rosenfeld, K., Hart, G.R.,
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Supplementary
Material

A The EpiHiper model

This section covers all aspects of the EpiHiper
model starting from foundational concepts and
going all the way through interventions. A run-
ning example of concepts is provided in the main
part of the paper.

A.1 Core concepts

Time and Iterations. The model advances in
discrete time steps t0, t1, t2, . . ., tn starting at t0
and where iteration k advances time from tk−1

to tk. The duration of each iteration is constant
and is denoted by T , which implies that tn =
tn−1 +T . Iteration 0 handles all initialization and
anything that takes place up until the time t0. In
particular, this covers invocation of interventions,
including vaccinations that have been adminis-
tered to members of the population prior to t0.

Health states. The disease model has a set
of health states denoted by

X = {X1, X2, . . . , Xm} . (2)

For a standard SIR-model, we have X = {S, I,R}.
Each person, represented as a network node,
is assigned a time-varying health state that is
updated at initialization and as the simulation
progresses through the transmission process and
the natural disease progression. Health states can
also be updated during interventions.

Susceptibility and infectivity. Each health
state X ∈ X has associated susceptibility and
infectivity denoted by σ(X) and ι(X). These are
fixed disease parameters (and are thus indepen-
dent of people). To model susceptibility and infec-
tivity of individuals, which will generally depend
on factors such as vaccination and use of personal
protective equipment, we assign each person P
an infectivity scaling factor and a susceptibility
scaling factor, and denote these factors by βι(P )
and βσ(P ). These are time-varying states with all
with default value 1.0. Following this, the effective
susceptibility and infectivity of person P in health
state Xi are modeled as (skipping the reference to

time, i.e., tn)

σP (Xi) = βσ(P )× σ(Xi) , and

ιP (Xi) = βι(P )× ι(Xi) .

Traits. EpiHiper supports the notion of
traits. These are configurable, dynamic variables
that can be attached to each person (node traits)
and/or to each contact (edge traits). The collec-
tion of traits are part of the model specification,
and are one of the foundations for interventions,
which we present below.

An example of a node trait useful to
scenarios involving vaccination is a Boolean
flag vaccinated that (through interventions) can
track a person’s vaccination status. Similarly,
an edge may have an associated Boolean edge
trait indoors encoding if the contact takes place
indoors. An intervention can then conditionally
handle people of different vaccination statuses as
well as indoor and outdoor contacts.

Variables. In addition to the per-person or
per-contact traits described above, EpiHiper sup-
ports declaration of variables. A prime example of
a variable could be the number of vaccine doses
administered within a health district on any given
day, thus ensuring that the model can handle
constrained resources. Another example of a vari-
able is one tracking whether school closures are in
effect. We note that variables are updated as part
of interventions, and also that EpiHiper tracks a
collection of standard variables, such as the total
and relative counts of people in each of the health
states as defined by the disease model.

EpiHiper primitives. These are the basic
quantities that EpiHiper makes available for
operations, either as part of the right-hand-side
expression of assignments or as the left-hand-side
(often referred to as an lValue) in assignment
operations. Table 3 provides a list.

Sets. EpiHiper supports the declaration of
sets. Sets may contain nodes and edges, and are
formed using standard combinations of logical
predicates, variables and EpiHiper primitives. An
example usage of sets is to pre-compute and cache
frequently used population subsets as interven-
tion targets. Sets are a special case of variables.
The Methods Section of the main paper pro-
vides an example related to school closure and
vaccinations.
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----------------------------------------------------------------------------------------

node.beta_i |rw| # infectivity scaling factor

node.beta_s |rw| # susceptibility scaling factor

node.healthState |rw| # health state

node.nodeTrait[featureName] |rw| # nodeTrait featureName of node

edge.edgeTrait[featureName] |rw| # edgeTrait featureName of edge

edge.active |rw| # active flag of edge

edge.weight |rw| # weight of edge

----------------------------------------------------------------------------------------

node.id |r | # PID of node

edge.sourceActivity[featureName] |r | # activiy of source of edge [only activityType]

edge.targetActivity[featureName] |r | # activity of target of edge [only activityType]

edge.sourceID |r | # source vertex ID of edge

edge.targetID |r | # target vertex ID of edge

----------------------------------------------------------------------------------------

observable |r | # current time, total population, etc

transmissibility |rw| # global transmissibility

<SetName> |r | # any set referenced by name

<VariableName> |rw| # any variable referenced by name

<TriggerName> |r | # any trigger referenced by name

----------------------------------------------------------------------------------------

Table 3 EpiHiper 1.0 primitives; here w means writable and r means readable.

A.2 The EpiHiper disease model

The disease model is split into (i) a disease trans-
mission and (ii) disease progression. The trans-
mission process governs how individuals become
infected while the disease progression captures the
health state evolution once infected. While it may
be convenient to combine these processes, it is
important to note that they are structurally dif-
ferent: transmission requires the presence of one
or more infectious people to infect a candidate,
susceptible person.6

A.2.1 Disease Transmission.

Disease transmissions that arise from contacts
between infectious and susceptible individuals are
modeled as follows: first, contacts are captured
as directed edges in the contact network (see
Section B). The potential infections that may
take place are determined through a person’s inci-
dent edges and a list of contact configurations
of health states. Specifically, an individual P in
health state Xi (the entry state) may transition
to state Xj (the exit state) when in contact with
a person P ′ in state Xk (the contact state). We
call this a transmission configuration, denote it

6EpiHiper does not currently incorporate transmission
through inanimate object.

by Ti,j,k = T (Xi, Xj , Xk), and associate to it
the transmission weight ωi,j,k = ω(Ti,j,k). This
weight represents the relative weight of this par-
ticular transition and is set to 1 by default. For
modeling the infection process, one will spec-
ify all the possible transmission configurations.
Note that transmission configurations are disease
parameters and independent of people and their
attributes. In accordance with standard terminol-
ogy, we call any entry state a susceptible state, any
exit state an exposed state, and any contact state
an infectious state. An EpiHiper model may have
multiple susceptible and infectious states.

For the infection (or transmission) process of
a person P in susceptible state Xi, we need to
consider all possible transitions from Xi to possi-
ble exit states Xj in the presence of persons P ′ in
possible contact states Xk.

Next, a disease model will have a transmis-
sibility that we denote by τ . It is a global
parameter representing a rate proportional to the
likelihood of becoming infected by being in con-
tact with a single susceptible individual for one
time unit; it may be used for calibration of, for
example, Reffective.

Finally, each edge e in the contact network is
of the form

e = (P ′, a(P ′), P, a(P ), w, α, T, edgeTrait)
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where a(P ′) is the activity of person P ′ at the time
of contact, T is the contact duration (within the
current iteration), w is an edge weight, and α is
Boolean (edge) variable indicating whether or not
the edge is active. Finally, edgeTrait is a config-
urable (but optional) set of variables (edge traits)
that may have been encoded when constructing
the network. Figure 10 provides an overview of all
the parameters and concepts covered above and
that are involved in the transmission process.
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Fig. 10 Overview of disease model parameters governing
disease transmission.

Under the assumption that transmissions
across all edges and contact configurations are
independent for each person P and their con-
tacts P ′, we define the propensity ρ for the edge e
and contact configuration as:

ρ(P, P ′, Ti,j,k, e) =
[
T · τ

]
× we × αe× (3)[

βs(P ) · σ(Xi)
]
×
[
βi(P

′) · ι(Xk)
]
× ω(Ti,j,k)

The algorithm to determine whether a disease
transmission takes place in the current iteration
(and also the decision of which contact to attribute
the transmission) as a result of all candidate trans-
mission configurations is modeled after the Direct
Gillespie Method [48, 49].

For (m ≥ 1) transmission configuration can-
didates for person P within an iteration, we
choose the actual contact configuration (i.e., per-
son P ′ and contact configuration Ti,j,k to whom
we attribute the infection) by calculating

A(P ) =
∑
P ′,j,k

ρ(P, P ′, Ti,j,k) , (4)

where the sum extends over all neighbors P ′ of P
and indices j and k for which a transmission may
occur. Without loss of generality, we assume that
the index set of triples K = {(P ′, j, k)} is well
ordered. To determine if we have a transition we

sample a random number

a = − ln(uniform(0, 1))/A ,

and, if the inequality a ≤ T = ∆tn holds, we
select the actual transition by sampling a uni-
form random number α ∈ [0, A] and determine the
index κ ∈ K for which∑

κ−1

ρ(P, P ′, Ti,j,k) < α ≤
∑
κ

ρ(P, P ′, Ti,j,k) .

(5)
Finally, the selected health state transition is
scheduled for time tn.

A.2.2 Disease Progression

The disease progression process covers the health
state transitions within an individual P that are
independent of other people. For the EpiHiper
model, a disease progression diagram (or spec-
ification) describes all the possible health state
transitions that may take place within a per-
son in the absence of transmission processes and
interventions. The diagram has nodes the set of
health states X = {Xi} and directed edges of the
form e = (Xi, Xj), each edge with an assigned
probability pe = prob(Xi, Xj) and a dwell time
distribution De. We require that, for each state
Xi, the sum

∑
j prob(Xi, Xj) over outgoing edges

must equal 1. The dwell time distribution De

for e = (Xi, Xj) is the probability density for
the dwell time in health state Xi given that the
transition Xi −→ Xj takes place.

Algorithmically, disease progression is mod-
eled as follows: when an individual P enters a
state Xi, the next state Xj is sampled accord-
ing to the next state distribution induced by the
probabilities pe, the dwell time ∆T in state Xi

is determined by sampling the dwell time dis-
tribution De, rounded to the nearest integer if
necessary, and then bounded below by 0. Finally,
the health state transition is scheduled to take
place at iteration tn+∆T . We remark that disease
progression may be overridden by interventions
and transmissions, should such events occur before
the scheduled health state transition dictated by
the disease progression.
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A.3 Interventions

Disease transmission and disease progression gov-
erns the dynamics of health states in EpiHiper.
However, the real power of EpiHiper lies in its
rich intervention model. An intervention I is a
triple I = (T,E,O) where T is the trigger con-
dition, a Boolean expression, the set E is the
intervention target, a collection of vertices and
edges, and O is a set of operations that can be
applied to the variables associated to the elements
of target set E, as well as global variables. The
trigger expression is a Boolean expression involv-
ing EpiHiper primitives and possible sizes of sets.
An intervention is executed for every iteration for
which its trigger evaluates to true at the start of
the iteration.

While expressiveness of the set of operations O
of an intervention may not fully rival that of a
general purpose programming language, the con-
structs that it permits are quite powerful. To
describe it, we use the some new notions:

• operation: an assignment to a variable of the
system;

• operationList: an ordered, possibly empty, list
of operations;

• operationEnsemble: the permissible constructs
used with EpiHiper.

The recursive, grammar-like definition of what
EpiHiper accepts is shown in Listing 1 but is
repeated here:

operat ionEnsemble :=
once

<ope ra t i onL i s t>
foreach

<ope ra t i onL i s t>
sampling <s amp l i ngSpec i f i c a t i on>

sampled
<operationEnsemble>

nonsampled
<operationEnsemble>

where

s amp l i n gSpe c i f i c a t i on :=
(

relativeSampling ( individual | \
group ) <percentage> |

absoluteSampling <i n t ege r>
)

and

ope r a t i onL i s t := <operat ion>+

operat i on := <var i ab l e>
<operator> <expres s ion> \

delay(< i n t ege r >) \
[ priority(< i n t ege r >) ] \
[ condition(<boo l exp r e s s i on >) ]

operator := ( = | ∗= | /= | += | −= )

The blocks within the actionEnsemble have the
semantics:

once: the operationList of the once block
will be executed precisely once when the inter-
vention is executed. Its purpose is to serve as
a mechanism to invoke actions just once if the
intervention is triggered to assign, e.g., global
variables.

foreach: the operationList of the foreach

block will be executed once against each element of
the target set. If the target element is a node (resp.
edge), only action statements that are valid for
nodes (resp. edges) and variables will be executed
while edges (resp. nodes) will be ignored.

sampling: the sampling block first partitions
the target set into two sets called sampledSet

and nonSampledSet, where nonSampledSet =
target\sampledSet. The set sampledSet is
determined as follows:

• absoluteSampling N: samples precisely
min(N, {target˝) elements of the target set;

• relativeSampling individual percentage:
each element of the target set is sampled
with probability percentage/100 to form
sampledSet;

• relativeSampling group percentage: pre-
cisely percentage percent of the target set is
sampled at random to form sampledSet.

The target set of the sampled branch is
sampledSet, and the target set of the nonsampled
branch is nonSampledSet.

Requirement: at least one of the once,
foreach, and sampling blocks must be present to
form a valid actionEnsemble. There is no limit
on the recursion depth made available through the
sampling control structure, but, in practice, this
will not be a concern.
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B Populations and networks

EpiHiper relies on population and network data
for the study region R. For this, we use our digital
twins framework [51, 52] of the actual popula-
tions (also referred to as synthetic populations).
These are statistically accurate representations of
the actual population, and capture (i) the peo-
ple and their household structures, (ii) activity
schedules for each person modeling the activities
they conduct (and when) during a typical day or
week, (iii) the locations where they conduct their
activities, and (iv) a contact network describing
with whom they come in contact during this time;
see Figure 9 for more details.

More specifically, a digital twin has a base
population, which is a set P consisting of (digi-
tal) people with demographic attributes such as
age, gender, race, and designation (derived from
the NAICS classification [53] of the PUMS [54]).
Household structure is central to many scenar-
ios, in particular to epidemiology and the design
of interventions. The base population is therefore
partitioned into a set H of households through
the iterative proportional fitting (IPF) [55] pro-
cess and by using the data contained in the PUMS
records. Households are augmented with data such
as household income and number of workers.

Each person in the digital twin population
is matched with an activity sequence using tech-
niques such as CART and FVM [56, 57], with
data collected mainly from the NHTS [58] in the
case of digital twins for the United States, but
also from sources such as Multinational Time
Use Study (MTUS), American Time Use Sur-
vey (ATUS) [59, 60]. These activity sequences,
upon standardization, contain typical activities
such as work, school, college, shopping, religion,
and other, as well as being at home, along with
the start time and duration of each activity.

The locations where people may conduct their
activities include residential dwelling units (resi-
dence locations) and locations where people con-
duct their non-home activities such as work,
school, worship, or shopping (activity locations).
Locations, which are geographically embedded,
are constructed carefully through an ensemble of
PostGIS and machine-learning based models fus-
ing NSSAC’s extension of the Microsoft Building
Data [61] with point-of-interest (POI) data from

HERE [62], BuildingFootprintUSA [63], and Scal-
able Linking and Integration of big POI data
(SLIPO) [64]. This is augmented with data on
school and college locations from the National
Center of Education Statistics (NCES) [65], and
classification steps based on, for example, land-
use polygons and urban/rural classifications [66].
Locations, as explained below, represent the
places where people interact, and are augmented
with North American Industry Classification Sys-
tem (NAICS)-derived designations.

The population construction next performs a
location assignment that maps people’s activities
to locations in a manner constrained by rules such
as “school activities should happen at schools”,
“shopping activities must take place in locations
supporting retail”, and “a student’s residence and
school location should reside in the same county”
(although there are clearly exceptions). Assign-
ment of work locations uses the American Com-
munity Survey (ACS) commute flow data [67] and
LEHD Origin-Destination Employment Statistics
(LODES) [68] to accurately capture commuting
patterns and long-distance travel, and to match
average daily travel distances as reported by the
Census [69].

The activity location assignment is succinctly
captured by the people-location network GPL

shown in Figure 9 (middle). A contact model
suited for the application scenario (e.g., epidemics
in the current case) is applied at each location
to construct a social contact network GP . The
network GP has vertex set P , and the contact
model is used to infer which simultaneous visits
of people p and p′ are deemed to result in a con-
tact and thus be captured as an edge e = (p, p′)
in GP as illustrated on the right in Figure 9.
From the network GP we also construct contact
matrices giving mixing rates among age groups
of the form used in [35, 36, 70]. (i) a location
assignment that, for each person and each of their
activities, assigns a location to that activity based
on a match of, e.g., designations (person desig-
nation vs. location designation: a school activity
generally takes place at a school), American Com-
munity Survey (ACS) commute flow data, and
National Center for Education Statistics (NCES)
school district information, and (ii) a suitable con-
tact model applied at each location to infer which
simultaneous visits to a location should consti-
tute an edge in the network. The contact model is
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informed by the application scenario (e.g., spread
of virus).

Mathematical model. Formally, a social contact
network is a labeled network GP (VP , EP ). The
nodes VP denote individual agents (people, ani-
mals, etc.). Edges in the set EP denote proximity
and depends on the specific disease under con-
sideration. For air-borne disease an edge captures
physical proximity within a few feet; for sexu-
ally transmitted disease, this would represent a
sexual interaction. Each node v ∈ VP has a num-
ber of configurable attributes. The precise set of
attributes depends on the questions being studied,
but for the U.S. will minimally include person ID,
household ID, age (in years), age group (as defined
by the CDC), gender, the latitude and longitude
of their residence and associated administrative
IDs going four levels deep (i.e., state ID, county
ID, census tract ID, block group ID). Similarly,
each edge e ∈ EP has associated a set of con-
figurable attributes that minimally includes the
target (resp. source) person ID, the target (resp.
source) person activity type, and the duration of
contact.

The main components of the digital twin are
illustrated in Figure 9 covering (i) the people,
(ii) their residences, retail locations, schools and
workplaces, and (iii) their mapping of activities
to locations (left side). In the middle of Figure 9,
the resulting people-location network GPL is illus-
trated, while on the right, an example contact net-
work GP is shown. EpiHiper may pre-partition
the contact network GP , and will load the cus-
tom person- and edge attribute data into its trait
database.

The population P and network
data GP (VP , EP ) are provided to EpiHiper in
the form of the person and edge trait database (see
Appendix Section C). This highly customizable
database allows EpiHiper to efficiently access the
digital twin data and to construct, for example,
target sets for interventions, see Figure 1 of the
main paper. In addition, this design also allows
efficient augmentation of person traits by adding,
for example, model-based inference of vaccination
status and likelihoods of compliance.
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C The EpiHiper Discrete
time parallel simulator

Architecture description. EpiHiper is a software
application designed to work in an HPC as well
as in a desktop environment. It is implemented
in C++ and uses MPI and/or OpenMP for par-
allel processing. The need for parallel processing
arises mainly from the memory requirement to
store the contact network (vertices and edges)
which has time-evolving attributes, but it obvi-
ously also has an impact on the compute time.
During initialization (see the algorithm in List-
ing 2), the network is distributed such that each
process (i.e., compute node) is assigned a fixed
set of vertices and all of their incoming edges
while ensuring that the memory requirements are
evenly distributed. For the operations described
in Section A.3, only the owner process of ver-
tices and edges is allowed to update their states.
With this restriction, the execution of operations
is done by each process using the queuing model
described in the previous section. While process-
ing interventions it can happen that variables of
vertices or edges belonging to other processes must
be altered. This is handled by scheduling these
operations on the processes (i.e., compute nodes)
that own those vertices or edges. In particular, we
note that the disease process (transmission and
progression) of vertices is fully controlled by their
owner process.

As can be seen in the algorithms of List-
ings 2 and 3, we achieve unambiguous processing
by cleanly separating the point of execution of
operations from the point where operations are
scheduled through disease transmission, disease
progression, or by interventions.

The EpiHiper model and implementation
support variables that are not attached to vertices
or edges; we refer to such variables as unattached
variables. For example, one may need phar-
maceutical interventions addressing constrained
resources such as a limited number of vaccine
doses. A straightforward way to implement this
is to introduce a variable (e.g., vaccineCounter)
that tracks the count of remaining doses, and
that is decremented whenever a dose of this
vaccine is administered. Since different processes
generally will operate at different computational
speeds, it is clear that the presence of unattached

Listing 2 The EpiHiper initialization

Algorithm : I n i t i a l i z eEp iH i p e r
i f network not pa r t i t i o n ed :

Part i t ionNetwork ( )

LoadAndCompile :
network , diseaseModel , t r a i t s ,
i n t e rv en t i on s , i n i t i a l i z a t i o n

In i t i a l i z ePe r sonTra i tDB ( )

t := Tstart − 1
I n i t i a l i z e :

Output , StateCounts

CreateDependencyGraph ( )
UpdateAllDependencies ( )

Schedul ing :
P r o c e s s I n i t i a l i z a t i o n ( )

Update :
ExecuteActions ( )

t += 1
Output :

healthStateChanges
hea l thStateCounts
network // op t i ona l

SynchronizeChanges ( )

Listing 3 The EpiHiper main algorithm

I n i t i a l i z eEp iH i p e r ( )

whi l e t < Tend :
ResetVar iab le ( )
UpdateAllDependencies ( )
Proce s sTr i gge r s ( )

Schedul ing :
I n f e c t i o nP r o c e s s ( )
P ro c e s s In t e rv en t i on s ( )

Update :
ExecuteActions ( )

t += 1
Output :

healthStateChanges
hea l thStateCounts
network // op t i ona l

SynchronizeChanges ( )
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variables may introduce scheduling dependencies.
Based on the EpiHiper model description in
Section A, the algorithm for execution of opera-
tions (Section A.3), and the above details regard-
ing the EpiHiper architecture and algorithm in
its implementation, we can now summarize all this
as follows:

Theorem 1 (Correctness and invariance) For a set of
interventions (Ik)k that does not contained unattached
variables, the EpiHiper software architecture correctly
implements the EpiHiper formal model. Modulo the
equivalence on orders of operations of equal priority,
for any fixed input specification, EpiHiper generates
the same output.

Regarding the invariance statement, it is
understood that the input specification includes
(a) the random seed used to initialize the random
number generator, and (b) the process specifica-
tion (i.e., the number of compute nodes).

A note on health state updates. Since it may
not be obvious, we remark on how health state
changes are implemented and executed: upon
entry to a new health state X, the successor
stateX ′ is immediately determined along with the
dwell time td in health state X ′. The operation
that sets the health state to X ′ is then sched-
uled with a delay of td and suitable priorities and
conditions as needed.

C.1 Detailed algorithms

The following diagrams and figures detail the
main algorithm and expansions thereof as per the
following list:

• Main process: Figure 11
• Transmission process: Figure 12
• Trigger processing: Figure 13
• Intervention processing: Figure 14
• Action ensemble processing: Figure 15
• Action scheduling processing: Figure 16
• Action execution processing: Figure 17

Fig. 11 EpiHiper main algorithm. This flow chart shows
the overall implementation of the simulation process,
including partitioning and initialization.
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Fig. 12 EpiHiper Transmission processing algorithm.

Start

trigger = begin triggers

if trigger == end triggersStop

if not triggered

trigger++

true

true

intervention = begin trigger.interventions

if intervention == end trigger.interventions
true

intervention.triggered = true

intervention++

Fig. 13 EpiHiper trigger processing algorithm.

Start

Stop

intervention = begin interventions

intervention == end interventions
true

intervention++

execute action ensemble(targets)

interventions

if not triggered
true

Fig. 14 EpiHiper intervention processing algorithm.
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target = begin intervention.targets

target == end intervention.targets

true
once

schedule actions(once, NULL)

foreach

sampling

true

schedule actions(foreach, target)
target++

Start

Stop

true

true

execute action ensemble(sampled set)
execute action ensemble(non-sampled set)

targets

Compute sampled subset(targets)

Fig. 15 EpiHiper action ensemble processing algorithm.

Start

actions
target

action = begin actions

action == end actionsStop

local target

broadcastQueue.add(action)

actionQueue.add(action) 

action++

true

true

Fig. 16 EpiHiper action scheduling algorithm.

Fig. 17 EpiHiper action execution algorithm.
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D EpiHiper scaling

Here we provide a detailed description of the scal-
ing studies referenced in the Results section (2)
of the main paper. First, computational experi-
ments were conducted for eight disease models (I
through VIII) across a set of interventions in the
case of Virginia (US). Each experiment was con-
ducted on compute nodes with dual CPUs having
20 cores each and 375 GB total memory across the
eight disease replicates, each with its set of inter-
ventions, and each instance with 15 replicates. The
details of each experiment is given by the following
tables:

• Table 4: list of the eight diseases and their
complexity elements;

• Table 5: the complete list of interventions used
in the experiments along with characteristics
impacting complexity;

• Table 6: the specific list of interventions used
with experiments I through VIII.

The disease models listed in Table 4 are vari-
ations of the classical SEIR model with extra
features. Their complexity can be represented by
the number of states and the number of state
transitions. Each model was calibrated so that we
have a complete epidemic during the simulation
for comparability.

Table 5 shows some common interventions
implemented in EpiHiper for various studies. The
column “Traits” refers to the usage of custom,
time-varying attributes of nodes, whereas the col-
umn “Demographics” gives the number of fields
accessed in the EpiHiper Postgres persontrait
database. The demographic information is in these
experiments only used during initialization, i.e,
does not have any influence on the run time.

Running time as a function of dis-
ease and intervention complexity. The results
(Figure 5 in the main paper and replicated here
as Figure 18) show the results of the eight com-
putational experiments (labeled I through VIII)
relating intervention complexity and time com-
plexity for combinations of interventions as listed
in Table 5. Here the computation times are fac-
tored by the main simulation tasks (intervention,
transmission, update, synchronization, output,
and initialization), with the intervention details of
each experiment as follows:

Fig. 18 Impact of intervention complexity on com-
putation time for experiments I–VII (see text) fac-
tored by the main simulation tasks of ■ intervention,
■ transmission, ■ update, ■ synchronization, ■ out-
put, and ■ initialization. The unit is seconds.

Running time as a function of network size
(nodes/edges) Figure 6 of the main paper’s
Result section give the near linear scaling of run-
ning time as a function of the size of the network’s
node set and edge set in the case of one of our
vaccine studies [9] covering all US states.
Memory requirement as a function of net-
work size. In Figure 19 we have shown the near
linear relation between the size of the network’s
vertex set and the corresponding memory usage
for the vaccine study of [9].
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Fig. 19 Scaling of state size vs memory requirements
for our vaccine study [9]

Performance and scaling with respect to
computational resources. We performed code
profiling to determine whether the chosen network
partitioning strategy is feasible for different prob-
lem sizes. Figure 20 indicates that increasing the
number of cores by a factor of 60 (from 2 for small
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Table 4 EpiHiper disease models with different complexity beyond SEIR and their computation time.

No. Disease Features Implementation
Complexity time

States Transmissions Progressions [s]
I Influenza asymptomatic

state
add state, transmission, and
progression

5 2 4 140 ± 3

II Ebola 8 3 8 142 ± 4
III Measles age stratified states/transitions for each

age group; transmissions
across age groups

35 25 20 142 ± 1

IV COVID v1 severe outcomes add states and progressions 13 6 16 148 ± 5
V COVID v2 v1 + age-

dependent
susceptibility and
outcomes

states/transitions for each
age group; transmissions
across age groups

90 225 100 139 ± 3

VI COVID v3 v2 + vaccines vaccinated states with differ-
ent transitions

105 300 120 146 ± 2

VII COVID v4 v3 + multivariant variant-specific infectious
states

140 600 185 141 ± 5

VIII COVID v5 v4 + immune wan-
ing/escape

transition from R to S; trans-
mission across variants

170 975 250 140 ± 3

Table 5 EpiHiper interventions and factors influencing their computational complexity.

Intervention Details
Node Edge Set

Traits Demographics
Sets Sets Operations

VHI Voluntary home isolation 1 2 2 1 2
SC School closure 0 1 0 1 2
SH, RO, PS order, reverse, alternate stay at home order 1 1 1 1 2
TA Test and isolation of asymptomatic cases 1 5 3 2 2
CTD1 Contact tracing distance 1 4 5 5 3 2
CTD2 Contact tracing distance 2 7 7 8 3 2

Table 6 The list of interventions used for each of the
experiments I through VIII.

Experiment Interventions
I VHI, SC, SH
II VHI, SC, SH, RO, TA
III VHI, SC, SH, TA
IV HI, SC, SH, RO, PS
V VHI, SC, SH, RO
VI VHI, SC, SH, RO, CTD1
VII VHI, SC, SH, RO, CTD1, PS
VIII VHI, SC, SH, RO, CTD2

US states (i.e., AK, DC, MT, ND, SD, VT, WY)
to 120 for CA) only increases the synchroniza-
tion by a factor of 8 (3.23%–25.2%), indicating
that inter-processes communication scales approx-
imately with

√
N where N is the number of cores

supporting the chosen partitioning strategy. The
memory and run time requirements for different
problem sizes scale linearly with the problem size.
In fact we found that the memory requirements
change minimally with varying disease model and
intervention complexity. The scaling of the run
time, even though always linear, is very much
dependent on the complexity of both.

Fig. 20 Distribution of simulation tasks (■ update,
■ intervention, ■ transmission, ■ synchronization,
■ output, and ■ initialization) for Round 8 of the Sce-
nario Modeling Hub scenario A (other scenarios lead
to similar results). A large amount of time is spent on
interventions, whereas the disease transmission uses
less than 1/4 of it. The states are sorted by the time
spent in synchronization.
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E Additional Related Work

Covasim: The Covasim [18] project developed
by Institute of Disease Management is perhaps
the most comprehensive open source agent-based
modeling environment that most closely relates
to our work. The system is has been well docu-
mented7 and provides an up to date information
on extensions to the basic model, publications
that use the model as well as information on the
ongoing community wide effort. It is written in
Python and largely meant for single CPU use. As
a result issues related to parallelization are not a
part of design consideration. It scales quite well
for for populations of size up to a million nodes.
This restricts the use of Covasim for US scale
agent-based models. Various interventions are pos-
sible, but how they are generalized is not clear
a priori. The disease models as described in the
paper are somewhat limited but can presumably
be extended.
Google and Open ABM Project. The Open
ABM project8 is an agent-based model to study

7Covasim: https://docs.idmod.org/projects/covasim/en/
latest/index.html

8Open ABM: https://github.com/BDI-pathogens/
OpenABM-Covid19

COVID-19 pandemic. The model has a number
of features but the documentation is relatively
sparse. It appears to be developed for a single CPU
with the core written in C. Various networks, dis-
ease models and interventions can be included like
for Covasim, but how they are specified and how
they can be generalized is not immediately obvi-
ous from the documentation. The Google ABM
project is based on our Episimdemics project and
Open ABM work. The development of the system
seems to have stopped some time back.
COVID-19 ABM. This computational COVID-
19 model by Galvani et al. [39] and used in for
example [40], is an agent based simulator with
code written for the Julia Language. Its scaling
is somewhat limited focusing on populations of
size ≤ 10, 000 and it uses a population structure
similar to that of Covasim and OpenABM with
network structures based contact data such as [35].
Their source is openly available9.
FRED. The agent-based model of FRED [15]
supports multiple, un-coupled (orthogonal) dis-
ease models. As for the models mentioned above,
the basic transmission is done per place (location)
using a uniform mixing model. The supported
models appear to take the form of basic SEIR,
SEIS, and SEIRS processes with opportunities
for the user to specify dwell time distributions.
As per their documentation there appears to be
support for networks (page 48), but such data
does not seem available and is not mentioned
in [15]. Using their notion of places, the equiva-
lent of a contact network is thus constructed by
the epidemic simulator for each time step and for
each location. The implementation of FRED as
reported in [15] is a threaded C++ code using
OpenMP. The simplifying assumption of uniform
mixing within a location in the contact modeling,
which may me adequate in many cases, allows one
to omit explicit network representations, in turn
permitting the reported scaling to populations of
30 million people. The open version of FRED
is openly available10, but we remark that the
official and commercial version of FRED is now
owned, maintained, and updated by the company
Epistemix.

9COVID-19 ABM: https://github.com/affans/covid19abm.
jl

10FRED: https://github.com/PublicHealthDynamicsLab/
FRED

https://docs.idmod.org/projects/covasim/en/latest/index.html
https://docs.idmod.org/projects/covasim/en/latest/index.html
https://github.com/BDI-pathogens/OpenABM-Covid19
https://github.com/BDI-pathogens/OpenABM-Covid19
https://github.com/affans/covid19abm.jl
https://github.com/affans/covid19abm.jl
https://github.com/PublicHealthDynamicsLab/FRED
https://github.com/PublicHealthDynamicsLab/FRED
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Covid-Sim. This is the simulation model used
by Neil Ferguson and collaborators as reported
in [21] with openly available source11. This is a
threaded C++ software running on a single com-
pute note with a collection of disease models and
interventions hard-coded into the source.

11Covid-Sim: https://github.com/mrc-ide/covid-sim

https://github.com/mrc-ide/covid-sim

	Introduction
	Results
	Scenario modeling hub (SMH) round 12

	Discussion
	Methods
	Code availability
	Acknowledgements
	Author contributions
	Competing interests
	Additional information
	The EpiHiper model
	Core concepts
	The EpiHiper disease model
	Disease Transmission.
	Disease Progression

	Interventions

	Populations and networks
	The EpiHiper Discrete time parallel simulator
	Detailed algorithms

	EpiHiper scaling
	Additional Related Work

