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• The efficient detection of outbreaks within networks has become a common 

topic of study.  A method of surveilling these networks is choosing a “sensor 

set,” a subset of size k of the original network, to monitor consistently.

• Choosing the optimal sensor set is a common area of research, with the 

most common method being using a greedy approach proposed by Leskovec

et al.1, who use submodularity to maximize the probability of detecting an 

infection within the network.

• We study the related problem of finding a sensor set that minimizes the 

delay of detection of an infection within a network, which we call the 

Minimum Delay Sensor Set (MinDelSS) problem.

• We show that the MinDelSS problem cannot be approximated within an 

𝑂 𝑛1−1/𝛾 -factor approximation, and solutions given by the greedy 

algorithm can be a factor of Ω(𝑛𝑇 𝑆∗ ), where 𝑆∗ is the optimal solution

• We introduce a bicriteria algorithm that gives a worst case 𝑂(log 𝑛)-factor 

for the average delay while violating the budget by a factor of 𝑂(𝑙𝑜𝑔2𝑛).

We define a linear program that finds the optimal sensor set to solve the 

MinDelSS Problem:

The binary constraints in (5) make this linear program infeasible for large 

networks. Instead, we define a new algorithm RoundSensor.

RoundSensor
1) Solve the linear programming problem while relaxing (5) to xu, yid∈ [0,1] for 

all u, i, d.

2) For each node u, add u to sensor set Sr with probability 𝑥𝑢
′ =

min{1, 𝑥𝑢 log 𝑛 + 1 log(𝑁𝑛)

3) Return Sr

Worst-Case Bounds

We show that our algorithm produces an output closer to the optimal 

sensor set for daily testing of individuals within a network, with 

experiments showing results that are even better than the worst-case 

bounds proven.

While our algorithm has the downside of not providing certainty in the 

testing budget, we believe that this tradeoff for a more optimal 

solution is worth it.

Future work would involve generalizing the linear program used in 

RoundSensor to handle looser periodic testing guidelines rather than 

daily testing.

We prove rigorous worst case bounds for the sensor set produced by 

RoundSensor depending on whether cascades are provided to us or not. If 

N cascades are provided, with probability of at least 1 −
2

𝑛
:

1) We have |𝑆𝑟| ≤ 𝑘 ∙ 2 log 𝑁𝑛 log(𝑛 + 1)

2) We have 𝑇𝑎𝑣𝑔(𝑆𝑟) ≤ 2 log 𝑛 + 1 𝑇𝑎𝑣𝑔 𝑆∗ where 𝑆∗ is the optimal 

solution.

If cascades are not provided, N cascades can be sampled using an SIR 

methodology. Let 𝑁 ≥
3

𝜀2
𝑛 𝑛 + 1 log 𝑛 for 𝜀 ∈ (0,1). We show that 

with at least probability 1 −
3

𝑛
:

1) We have 𝑆𝑟 ≤ 𝑘 ∙ 7 log
1

𝜀
𝑙𝑜𝑔2 𝑛

2) We have 𝐸 𝑇 𝑆𝑟 ≤ 2 1 + 𝜀 log 𝑛 + 1 𝐸[𝑇 𝑆∗ ] where 𝑆∗ is the 

optimal solution.

Experiments cont.

Across the five datasets used for testing, our randomized rounding approach 

never violated our initial budget k by a factor of more than 2. This is much 

better than the worst-case bounds that we prove within the paper. 

Experiments with RoundSensor

RoundSensor outperforms the baselines of selecting random nodes or selecting 

the highest degree nodes by a large margin, while also outperforming the 

greedy algorithm proposed by Leskovec et al.1, even after accounting for 

possible budget violations. The mean detection time was up to 9% lower than 

our greedy baselines on a network of 9949 nodes and 399495 edges.
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