
PERTURBATIVE METHODS FOR MOSTLY MONOTONIC1

PROBABILISTIC SATISFIABILITY PROBLEMS2

STEPHEN EUBANK∗, MADHURIMA NATH† , YIHUI REN‡ , AND ABHIJIN ADIGA∗3

Abstract. The probabilistic satisfiability of a logical expression is a fundamental concept known as the partition4
function in statistical physics and field theory, an evaluation of a related graph’s Tutte polynomial in mathematics,5
and the Moore-Shannon network reliability of that graph in engineering. It is the crucial element for decision-making6
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we extend the weak- and strong-coupling methods of statistical physics to heterogeneous satisfiability problems9
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the sense that they are saturated by some problem instance that is compatible with all the information contained in12
either approximation.13
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1. Introduction. At the heart of some of the thorniest problems in physics, computer science,16

engineering, and combinatorics lies a question that can be stated simply: given the probabilities17

that any of a large set of events occur, what is the overall probability that a logical statement about18

combinations of those events is true? We can think of the statement, E(c), as an assertion that a19

dynamical system in configuration c has a certain property. For example, given a lattice of magnets20

free to flip their orientations, what is the probability that two magnets separated by k lattice sites21

point in the same direction? Or given the presence of an electron at position x0 at time t0, what22

is the probability of observing an electron at position x1 at time t1? Or given the probability of23

failure for “crummy” [11] relays in an electrical circuit, what is the probability of establishing a24

current from one terminal to another? This question is known as the probabilistic satisfiability[6]25

(PSAT) problem. Hard enough in the homogeneous case, when the probabilities of every event are26

the same, it becomes nightmarish in the more important heterogenous case, when the probability27

of each event can be different. Heterogeneous systems arise if, for example, the lattice of magnets is28

stretched anisotropically, or each relay in the circuit is different. A general method for answering it29

would find immediate technological applications in designing networks to avoid cascading failure or30

optimizing vaccination strategies, among many others. Here we synthesize the explicit symmetries31

of Max Flow / Min Cut properties with the mathematical framework of network reliability and the32

perturbative analyses of statistical physics and field theory to produce a hierarchy of approximate33

solutions with controllable, bounded error.34

A system’s configuration is an assignment of states to each of its elements. The system is35

defined by a probability distribution, p, over configurations. In a system with a finite number of36

configurations, the probability that E is true is simply the sum of the probabilities of all configura-37

tions for which E is true, or, in terms of the indicator function δ which is 1 if its argument is true38

and 0 else, p(E) =
∑
c∈C δ(E(c))p(c). Partitioning the configurations into equiprobable equivalence39

classes, K, this can be written as p(E) =
∑
k∈K n(k)pk, where n(k) is the fraction of configurations40
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that have probability pk for which E is true. The function n(k) is known as the density of states41

function.42

When only the relative probability p̂ of different configurations is known, properly normalized43

probabilities can be obtained as p = p̂/Z, where the normalization constant Z =
∑
k∈K n(k)p̂k44

is known as the partition function. For a large class of physical systems, p is the Boltzmann45

distribution, an exponential distribution that depends on the energy E(c) of a configuration and46

the inverse of the system’s temperature, β, i.e., p(c) ∝ e−βE(c). In this case, the normalization47

“constant” is a function of temperature:48

Z(β) =

K∑
k=1

n(k)e−βEk ,(1.1)49

50

assuming every configuration has one of K distinct energies, Ek. The partition function is key to51

understanding statistical systems because its logarithm is the moment generating function. For52

example:53

− ∂

∂β
lnZ =

∑K
k=1Ekn(k)e−βEk

Z
= 〈E〉.(1.2)54

55

Unfortunately, since evaluating the partition function is equivalent to solving PSAT or solving56

a network reliability problem, it is in the complexity class #P [16]. In practice, the solution57

is computationally infeasible for the foreseeable future even for fairly small sets of events. Exact58

solution requires summing over each of 2N possible configurations. Fortunately, when E is monotonic59

– i.e., the sense of each event can be chosen so that E contains no negations – the oracle does not60

need to be called for every configuration. Typical expressions in physical systems exhibit regularities61

that allow some shortcuts, such as explicit forms for the density of states, but this is not generally62

the case in other domains.63

There are several approaches to approximating Z for a monotonic E when p̂ is known:64

1. Probabilistic methods and simulations approximate n(k). They rely on algorithms that65

count approximately how many configurations are in each equivalence class in K and how66

many of those satisfy E .67

2. Renormalization produces an effective theory with fewer degrees of freedom and thus fewer68

configurations in the sum. Renormalization recursively “integrates out” some degrees of69

freedom – e.g., alternate sites in a lattice – to define a new problem with the same solution.70

Indeed, PSAT is equivalent to an evaluation of a Tutte polynomial, which can be defined71

by recursive renormalization [1].72

3. Perturbative methods compute leading terms in a Taylor series expansion of the solution73

for a system whose parameters have been perturbed slightly away from a system with a74

known solution.75

Roth has shown that approximately counting solutions is also hard [15], but his arguments apply76

to relative, not absolute, error:77

The notion of approximation we [Roth] use is that of relative approximation.78

. . . For example, there exists a polynomial time randomized algorithm that approxi-79

mates the number of satisfying assignments of a DNF formula within any constant80

ratio. It is possible, though, for a #P-complete problem, even if its underlying81

decision problem is easy, to resist even an efficient approximate solution. . . . We82

prove, for various propositional languages for which solving satisfiability is easy,83
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PERTURBATIVE PSAT 3

that it is NP-hard to approximate the number of satisfying assignments even in a84

very weak sense.85

Probabilistic satisfiability places the problem in a continuous rather than discrete context, where86

notions of smoothness make sense. Perturbative approaches, called weak- and strong-coupling ex-87

pansions in statistical physics, take advantage of smoothness to provide excellent approximations88

for many problems [3]. Indeed, perturbative approximation of the “propagator” in quantum elec-89

trodynamics (which is an infinite PSAT problem) resulted in what is generally acknowledged to be90

the most careful comparison between experiment and theoretical implications of a physical theory91

ever made [5].92

Here we develop practically useful approximations for finite, monotonic PSAT using a novel93

combination of perturbative and probabilistic methods with some elements of renormalization and94

simulation. Furthermore, we show how to interpolate between two perturbative approximations95

to enforce constraints on unitarity and monotonicity that the truncated Taylor series do not obey.96

Finally, we use the interpolated perturbation series to construct bounds on the approximation97

error, which improve on bounds constructed using only one or the other [9]. The interpolation98

relies on three principles – positivity, unitarity, and duality – that emphasize different aspects99

of the simple observationthat all probabilities lie in the interval [0, 1]. The approach provides a100

nested hierarchy of perturbative approximations with bounded error giving a controllable trade-off101

between computational complexity and approximation error. The approximations are controlled by102

two parameters: S, the number of samples generated in the probabilistic part, and D, the depth103

of expansion in the perturbative part. For large enough S and D, the approximation becomes104

exact. When D is small, the quality of approximation depends on the problem instance. When105

S is sufficiently large, the bounds on approximation error are tight in the sense that there are106

expressions E ′ that are consistent with the perturbative approximations and saturate the bounds.107

When S is small, the bounds are not strict for E , but they are tight bounds on a simpler problem108

E ′ that contains all the information about E that is available in the sample.109

Section 2 gives a formal statement of the problem. In particular, subsection 2.4 reconciles the110

claims for our approximations with the fact that even approximating the satisfiability is NP-hard.111

Section 3 maps the problem to a graphical setting analogous to Feynman diagrams, where the112

satisfiability becomes the propagator, the 2-terminal Moore-Shannon network reliability [11] or,113

equivalently, an evaluation of the Tutte polynomial. The approximation methods are described114

in section 4 for the case of identically distributed variables. A fully worked, nontrivial example115

is explained in section 5. The extension to non-identically distributed variables is developed in116

section 6 and applied to several variants of the example in section 7.117

2. Problem statement.118

2.1. Events. Consider a set of N events Ei which might or might not occur in any instance of119

a random process. We assume the events occur independently of each other. Sometimes the events120

must be defined carefully to ensure they are truly independent. For example, in simple models121

of disease transmission, whether one person is infected depends on who else is infected, whereas122

whether one infected person transmits to a susceptible person is independent of other transmission123

events. The former is the kind of compound event that is captured by the expression E , but it is124

not an atomic event E. With each event Ei for i ∈ {1, . . . , N}, we associate a Bernoulli random125

variable ei ∈ {0, 1} and a probability x̃i ∈ [0, 1] that ei = 1, meaning that Ei occurred. Until126

section 6, we assume a homogeneous system with x̃i = x for all i.127
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4 S. EUBANK, M. NATH, Y. REN, AND A. ADIGA

2.2. Satisfiability Expression. Suppose there is a monotonic Boolean expression E in dis-128

junctive normal form, i.e.,129

(2.1) E =

m∨
i=1

 ∧
j∈Li

ej

 ,130

where Li ⊆ {1, . . . , N}. To avoid trivial cases we assume that |Li| ≥ 1 and m ≥ 1. Given131

an assignment of values to every ei – i.e., a system configuration – the expression E evaluates132

deterministically to either true or false. We say the expression is satisfied if it evaluates to true,133

and the configuration is a solution. We refer to each of the m conjunctions in Equation (2.1) as a134

clause. Each clause is defined by a set Li of events that must all occur in order for the clause to be135

satisfied. We also refer to the set of integers Li as clause i when it causes no ambiguity.136

2.3. Satisfiability Problems. The deterministic satisfiability literature focuses on counting137

solutions. Probabilistic satisfiability asks instead: What is Ξ(E , x̃), the probability that the expres-138

sion E is satisfied given the probability of individual events x̃i? Ξ(E , x̃) is a sum of probabilities over139

all solutions; evaluating it is thus at least as hard as counting the solutions. Indeed, when every140

event occurs with probability 1/2, the satisfiability reduces to the ratio of the number of solutions141

to the number of configurations, 2N .142
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Fig. 2.1. Satisfiability for the example expression in (5.1), as a function of x = p(e2). (Left) Upper and
lower bounds on (hypothetical) δ-approximants to the satisfiability, with δ = 0.1, along with the strict, but not
tight, bounds of (2.10) based only on the number of events in the expression. (Center) Truncated Taylor series for
the homogeneous example to O(x3) at x = 0 and O((1 − x)2) at x = 1, along with the bounds and interpolation
developed here. (Right) The same as the center panel, but for the heterogeneous problem described in section 7 with
(x̃1, x̃6) = (1/2, 1/4).

2.4. On the nature of approximation. It is important to distinguish between the notions of143

“approximation” used here and in algorithmic complexity. Specifically, Roth considers both relative144

approximation – the result M ′ is a δ-approximation to M if and only if M ′/(1+δ) ≤M ≤M ′(1+δ)145

for δ ≥ 0 – and the use of approximate theories – expressions E ′ and E ′′ for which p(E ′) ≤ p(E) ≤146

p(E ′′). Relative approximation is known to be NP-hard for PSAT, but approximate renormalization147

and perturbative methods produce approximate theories. The left panel of Figure 2.1 illustrates148

differences in the character of results for the example in sections 5 and 7. The simplest perturbative149

approximations, based only on the number of events in E as in (2.10), constrain the exact solution150

to lie in the green band in the figure; a relative approximation to the exact answer (dashed curve)151

with δ = 0.1 would lie between the two solid curves. Clearly, at this order, the perturbative152

approximation is almost useless, and Roth correctly judged the use of approximate theories to153
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PERTURBATIVE PSAT 5

be ineffective for the decision problem he studied. However, notice that relative approximation154

does not automatically incorporate constraints such as unitarity or duality, and that, of course,155

the absolute error can be large where the exact answer is large. By including more information156

about the expression in a perturbative analysis, it is possible to “squeeze” the bounds dramatically,157

as illustrated in the center and right panels of the figure. The resulting approximation respects158

unitarity and duality, and provides small absolute errors at both ends of the domain. However, the159

bounds cannot be squeezed much in the middle, where, as we show below, there is little information,160

so the relative error cannot be reduced uniformly below an arbitrary threshold δ.161
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Fig. 2.2. Perspectives on the partially ordered sets corresponding to the expression E = (e1∧e2)∨ (e1∧e3)∨e4.
Each configuration is labelled (redundantly) with the indices of the events with ei = 1 on the top line and those
with ei = 0 on the bottom. The i-th row, starting from i = 0 at the top, contains all configurations with exactly
i true events. Cuts are indicated by circles; struts by squares. Filled circles or squares are not minimal. Left: A
separatrix between cuts and struts in the lattice of all possible configurations for a monotonic expression over N = 4
events. Darker edges indicate those that connect a strut to a cut. The separatrix is the thick, orthogonal curve from
the left to the right edge of the lattice. All minimal struts and cuts are adjacent to the separatrix, but the converse
is not true. Center: The descendants of minimal cuts and struts and the degeneracy of each configuration (the
number of direct ancestors that are cuts or struts). Only the edges that do not cross the separatrix are shown, for
clarity. Right: A notional depiction of the “light cones” of minimal struts (red) and cuts (green). The degeneracy
of configurations within a cone is indicated by the color’s shade and labeled at the minimum configuration of the
region. If there are more than two minimal struts, the partition into cones is not necessarily planar, as illustrated
in the center panel. Here, the minimal struts are either on the boundary or adjacent to cuts with degeneracy 2 and
vice versa.

2.5. Monotonicity, minimality, and total probability. The set of all configurations is162

the power set of the set of events. Any configuration can be labeled by the set of events for which163

ei = 1. It is convenient to impose the partial order of set inclusion on the set of all configurations164

and to represent the graded partial order, with the rank of configuration labeled s given by |s|, as165

the lattice depicted in Figure 2.2. We define D(c) to be the set of all descendants of c in the lattice.166

That is, D(c) ≡ {c′ ∈ C|c′ ⊇ c}.167

The total probability pt of a configuration c is the probability that the associated clause is true,168

i.e., the sum of probabilities of all its descendants that satisfy E . Clearly, pt(c) ≥ p(c). For a169

monotonic system, if c satisfies E , so do all its descendants. If the events are independent of each170

other, the probability of a configuration factorizes into the product of probabilities of the individual171
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events. Thus, for a configuration c that satisfies E ,172

pt(c) = p

(∧
i∈c

ei

)
=

∑
c′∈D(c)

p(c′)δ(E|c′)(2.2)173

monotonic−−−−−−−→
∑

c′∈D(c)

p(c′)
independent−−−−−−−−→

∏
i∈c

x̃i
homogeneous−−−−−−−−−→ x|c|.(2.3)174

175

Because the descendants of any two configurations c1 and c2 are not disjoint, the probability of a176

disjunction of clauses is sub-additive. The Inclusion-Exclusion principle gives177

(2.4) p(Li ∨ Lj) = pt(Li) + pt(Lj)− pt(Li ∪ Lj)178

A finite, monotonic system admits the notion of minimal solutions. A configuration c is a179

minimal solution if it is a solution, but no proper subset of c is a solution. See examples in180

section 5. Without loss of generality, we will assume that each clause in E is a different minimal181

solution, i.e., for distinct i and j, Li * Lj . Under this condition,182

(2.5)
∑
c∈L

p(c) ≤ p(E) ≤
∑
c∈L

pt(c).183

These simplistic bounds could be tightened recursively, but it will be easier to use the duality184

introduced in subsection 2.6.185

The descendants of Li∪Lj are all included in both the first and second terms of (2.4); the third186

term serves to correct this overcounting. In general, we define a configuration’s degeneracy as the187

number of distinct minimal solutions it has among its ancestors, including itself. The right panel of188

Figure 2.2 illustrates the degeneracy in a simple example. Just as there is a set of minimal solutions189

in a monotonic problem, there are sets of minimal configurations with degeneracy 1 ≤ k ≤ L, which190

we denote byMk. (Notice thatM1 = L.) One way to constructMk is first to construct all possible191

unions of exactly k elements of M1, then to remove those that are supersets of others. Iterating192

the Inclusion-Exclusion principle in (2.4), we can reorganize the sum into a form that produces a193

power series:194

(2.6) p(E) =
∑
c∈C

δ(E|c)p(c) =

L∑
k=1

(−1)k+1
∑
c∈Mk

pt(c)
independent−−−−−−−−−→
homogeneous

L∑
k=1

(−1)k+1
∑
c∈Mk

x|c|.195

2.6. Duality, struts, and cuts. The logical complement of the expression E , denoted E , can196

be expressed in disjunctive normal form using the complements of each random variable, e:197

(2.7) E =

m∨
i=1

 ∧
j∈Li

ej

 =

m∧
i=1

 ∨
j∈Li

ej

 =

m∨
i=1

 ∧
j∈Li

ej

 .198

The clauses L1, . . . , Lm and m are related to L1, . . . , Lm and m in a complicated way. Notice that199

E is monotonic in terms of the negated variables e,. The probability that ei = 1 is 1− x̃i, hence200

(2.8) Ξ(E ,x) = 1− Ξ(E , 1− x)201
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The complement E induces a partial ordering on the power set of {1, . . . , N} that is the dual of the202

one induced by E , as illustrated in Figure 2.2. This duality is at the heart of the Max Cut / Min203

Flow relationship [7]. To emphasize this duality, we refer to solutions of E as struts and solutions204

of E as cuts. The set of struts, as their name suggests, are the support of Ξ(E ,x); the cuts, as we205

show below, are the usual cut sets in a graph induced by E .206

2.7. Upper and lower bounds: parallel and series expressions. We refer to the conjunc-207

tion Es =
∧k
i=1 ei as the series expression formed from these events, and the disjunction Ep =

∨k
i=1 ei208

as the parallel expression. These expressions are duals of each other, with209

(2.9) Ξ(Es, x) = xk and Ξ(Ep, x) = 1− (1− x)k210

The identity Equation (2.8) is easily verified for this case. Moreover, the series and parallel ex-211

pressions bound the satisfiability of any non-trivial, finite, monotonic, homogeneous expression on212

exactly N variables. Considering nothing about E except that it contains N distinct events, we213

still know there must be at least one solution, and the smallest probability it can have in the ho-214

mogeneous case is xN . Applying the same logic to the dual expression and using (2.5) and (2.8)215

gives216

(2.10) Ξ(Es, x) = xN ≤ Ξ(E , x) ≤ 1− (1− x)N = Ξ(Ep, x).217

2.8. Implicit PSAT. The perturbative approximations here are predicated on explicit ex-218

pressions for both E and E in terms of minimal struts and cuts, respectively. Life rarely provides219

either, much less both, and almost never in terms of minimal clauses. This section describes a220

simulation method for sampling the minimal clauses when they are unavailable a priori. This step221

adds another layer of approximation to the problem, and it is not yet clear how this affects the222

overall approximation error. In principle, analyzing a small sample of minimal struts or cuts is223

equivalent to analyzing a simpler expression E .224

Although the individual events ei in a PSAT problem are not deterministic, deciding whether225

a particular set of events forms a solution is. We will assume that E is embodied in a deterministic,226

binary oracle instead of an extensional disjunctive normal form expression. A monotonic problem227

admits a continuous separatrix splitting the lattice of possible outcomes into cuts and struts, as228

shown in Figure 2.2. Any path from the known cut at the top of the lattice to the known strut229

at the bottom must intersect the separatrix exactly once, so it can be located by a binary search230

in O(logN) steps. However, not every configuration bordering the separatrix is minimal – it is231

necessary to test for minimality, which could require up to O(N) tests, i.e., calls to the oracle.232

If the configuration is not minimal, a minimal one can be found by walking along the separatrix,233

which requires at most an additional O(N) steps. In the worst case, it is possible that the process234

requires O(N2 logN) calls to the oracle. Average-case complexity is not obvious. The search can235

be biased, for example towards or away from finding completely disjoint minimal sets or towards236

finding the smallest minimal sets. Bespoke methods for specific classes of graphs or expressions,237

e.g., path-finding, may perform substantially better.238

3. Relation to network reliability. Every monotonic expression can be mapped into a239

weighted, directed graph with two special vertices, S and T , and every solution to the associated240

SAT problem corresponds to a path on that graph from S to T .1 The partial order lattice itself241

1This construction can also be used to map any monotonic network reliability problem into an S-T version,
demonstrating that S-T reliability is universal.
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8 S. EUBANK, M. NATH, Y. REN, AND A. ADIGA

is one such graph, where the vertices representing each clause and their descendants are identified242

and labeled T . The mapping is not unique, but there is a single choice that is arguably the most243

natural representative, constructed as follows. Beginning with the partial order lattice with vertices244

identified as above, recursively identify first, all the vertices with the same sets of incoming edges,245

and then, all the vertices with the same sets of outgoing edges. A detailed algorithm is given in246

Appendix A. The satisfiability Ξ is the probability that a random walker starting at S will reach247

T or, equivalently, the probability that a random subgraph of G constructed by choosing each edge248

with probability equal to its weight includes a path from S to T . This is the “S-T” or “two-point”249

network reliability introduced by Moore and Shannon[11]. The paths are the Feynman diagrams250

for the perturbative approximation to Ξ. It is trivial to compute Ξ on a tree, but loops, even acyclic251

ones, induce dependencies between different paths that are hard to deal with.252

Notice that this construction can handle events that occur in both positive and negative senses253

as independent events, as long as we require that clauses that include both variables are ignored.254

The resulting graphs can be split into two subgraphs that intersect only at S and T . Of course,255

every such event requires another split, so that, if there are k such events, there will be 2k separate256

subgraphs. The methods described here are appropriate when the expression E is mostly monotonic,257

i.e., when k � N . In principle, it is possible that more complicated constraints on the joint258

probability of two events could be handled, but that is beyond the scope of this work. The inverse259

process – constructing a SAT expression from a graph – is exactly identifying minimal solutions.260

For a monotonic system, Ξ(E ,x) is a monotonic polynomial with integer coefficients mapping261

the unit interval to itself. Since each variable ei appears at most once in any clause or path, the262

reliability in the homogeneous case is a polynomial of degree at most N . In the thermodynamic263

limit, N → ∞, for many systems the partition function exhibits a discontinuity at a critical value264

of x, indicating a phase transition. For finite N , there can be no discontinuity, but there can be265

a “shadow” of a discontinuity, i.e., an abrupt, nonlinear change in value over a small range of x,266

called the transition region. This behavior limits the utility of Taylor expansions for Ξ, as indicated267

in the center panel of Figure 2.1.268

4. Perturbative methods. As discussed in subsection 2.5, the reliability is not just the sum269

of total probabilities for each clause, because this overcounts the contribution of many configura-270

tions. The Inclusion-Exclusion expansion correctly handles all the contributions, but only at the271

cost of increasing the number of terms to as many as 2|L|. Moreover, the terms form an alternating272

series with combinatorially large coefficients. Applying the expansion to E (resp., E) produces a273

power series in x (resp., 1− x) – i.e., a Taylor series at x = 0 (resp., x = 1) – for the satisfiability.274

These are the weak- and strong-coupling expansions of statistical physics. Truncating either ex-275

pansion at depth D has the effect of truncating the associated Taylor series. The truncated Taylor276

series do not respect unitarity, monotonicity, or duality, nor do they separately provide either an277

upper or lower bound on the answer. However, combining the two truncated Taylor series using278

duality and imposing monotonicity on the result restricts the space of possible solutions and allows279

us to identify upper and lower bounds.280

4.1. Taylor series expansion(s). We can truncate the Inclusion-Exclusion expansion at281

any desired depth D to obtain the first κ(D) Taylor coefficients exactly, and thus an O(xκ(D))282

approximation, where κ(D) is 1 less than the size of the smallest union of D+1 sets. κ(D) depends283
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on E , as illustrated in section 5:284

(4.1) κ(D) = min
D+1−tuples t

∣∣∣∣∣
D+1⋃
i=1

Lti

∣∣∣∣∣− 1.285

Minimality of the clauses guarantees that κ(D) ≥ D. In practice, it may be the case that κ(D)� D.286

4.2. Bezier polynomial representation. Applying the Inclusion-Exclusion expansion to287

minimal configurations results in degree-N polynomials in x or 1− x, i.e.,288

Ξ(E , x) =

N∑
k=0

αkx
k =

N∑
k=0

αk(1− x)k.(4.2)289

290

The number of configurations with exactly k events occurring is
(
N
k

)
and the probability of291

each is xk(1− x)N−k. Hence, Moore and Shannon [11] suggested writing292

(4.3) Ξ(E , x) =

N∑
k=0

βk

(
N

k

)
xk(1− x)N−k.293

The transformation from α to β is a change of basis in the vector space of polynomials of degree294

N from the power basis to the Bernstein basis, whose basis elements are: [4, 10]295

(4.4) B(N, k, x) ≡
(
N

k

)
xk(1− x)N−k.296

As summarized in the commutative diagram of Figure 4.1, a Taylor series can be thought of as297

a linear operator Y from RN+1 to polynomials of degree N on [0, 1]. A Bezier polynomial is a298

(different) linear operator Z from RN+1 to polynomials of degree N on [0, 1]. The representation in299

the Bernstein basis has many useful, well-known properties. Here we will make use of the following:300

• Bernstein basis functions B(N, k, x) are strongly localized around the point k/N. Hence301

they are kernel density estimators for functions on the unit interval.302

• The Bernstein basis functions are invariant under the simultaneous operations x ↔ 1 − x303

and k ↔ N − k. Hence, if Sβ is a reflection, i.e.,304

(4.5) Sβ(β0, β1, . . . , βN−1, βN ) ≡ (βN , βN−1, . . . , β1, β0),305

then306

(4.6) Z(β, x) = Z(Sβ(β, 1− x)).307

• The transformation from the power basis to the Bernstein basis is accomplished using a308

matrix closely related to Pascal’s triangle. Specifically, if309

(4.7) β = T (N)α, where T
(N)
k,j ≡

(
k

j

)/(
N

j

)
=

(
N − j
k − j

)/(
N

k

)
,310

then Z(β, x) = Y (α, x).311
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PN f(x) f(1− x)

RN+1 (α, x) (α, 1− x)

[0, 1]N+1 (β, x) (β, 1− x)

S

Sα

T

Taylor

T

Taylor

Sβ

Bezier Bezier

f∈K

βk=1−βN−k

Fig. 4.1. A commutative diagram illustrating relationships among: (1) α, Taylor coefficients at x = 0; (2) α,
Taylor coefficients at x = 1; (3) β and β, Bezier coefficients; and (4) the reflection S which maps x ↔ (1 − x).
The function f(x) is a Taylor series in x constructed from the coefficients α or, equivalently, a Bezier polynomial
in x constructed from the coefficients β. When f is skew-symmetric about x = 1/2, e.g., f(x) = 1− f(1− x), then
βk = 1 − βN−k, as indicated by the dashed curve. The resulting redundance in the Bezier coefficients can be used
to bound the approximation error when not all Taylor coefficients are known.

• The curve (x, Z(β, x)) is contained within the convex hull of the points (k/N, βk). Hence312

if β0 = 0, βN = 1, and 0 ≤ βk ≤ 1 for all other k, then Z(β, x) is also in the interval313

[0, 1]. The analogous constraint on Taylor coefficients is not simple – in fact it is most314

easily derived by way of T−1.315

• If the coefficients βk are monotonic in k, then Z(β, x) is also monotonic. Once again,316

the analogous constraint on Taylor coefficients is not obvious. Although the converse is317

not necessarily true in general, the semantics of the satisfiability’s coefficients places a318

monotonicity constraint on them as shown in subsection 4.3.319

• The derivative of a Bernstein polynomial at x = 0 or 1 is320

(4.8)
dm

dxm
B(N, k, x)

∣∣∣∣
0

=

{ N !
(N−m)! (−1)m−k, k ≤ m ≤ N

0 else
321

• de Casteljau’s algorithm for evaluating Bezier polynomials is numerically stable and does322

not require explicitly constructing the binomial coefficients.323

This basis was introduced by Bernstein to prove the Weierstrass approximation theorem [4] by324

constructing the convergent single-parameter family of approximations325

(4.9) f (N) ≡
N∑
k=0

f (k/N)B(N, k, x).326

Members of this family of approximants are referred to as Bernstein polynomials for f . Here we327

instead construct an approximation whose first m (resp., m) derivatives at x = 0 (resp., x = 1)328

match those of f . To emphasize the difference, we call these Bezier polynomials[8]. They are also329

sometimes referred to as “polynomials in Bernstein form”.330

The symmetry of Bernstein basis functions shown in (4.6) makes them ideal for representing331

the duality in PSAT problems. Notice that if α and α are, respectively, the Taylor coefficients of332
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f(x) and 1− f(x) at x = 0 and 1, then the symmetry f(x) = 1− f(1− x) allows us to write333

Y (α, x) = 1− Y (α, 1− x) = Y (α, 1− x)(4.10a)334

Z(Tα, x) = Z(Tα, 1− x)(4.10b)335

Z(β, x) = Z(β, 1− x) = Z(Sβ, x).(4.10c)336337

That is β = Sβ or338

(4.11) βk = βN−k,339

as illustrated in the commutative diagram.340

4.3. Bounds and Interpolation. The transformation matrix T is lower triangular. Hence341

βk is completely determined by the values of αj for j ≤ k. From the first κ coefficients of the342

Taylor series at x = 0, we obtain the first κ coefficients of the Bernstein representation; from the343

first κ coefficients of the Taylor series at x = 1, we obtain the last κ Bernstein coefficients using344

Equation (4.10c). When κ+ κ < N , the coefficients βκ, . . . , βN−κ are undetermined. Nonetheless,345

monotonicity allows us to place tight upper and lower bounds on βk+1 given βk. Although the convex346

hull property of Bezier polynomials ensures that monotonically increasing coefficients produce a347

monotonically increasing polynomial, the converse is not necessarily true. The argument for the348

converse in this case provides insight into how β characterizes scale-dependent structure.349

The number of solutions to the satisfiability problem in which exactly k variables are true –350

i.e., the number of struts in level k of the partial order lattice – is given by nk ≡ βk
(
N
k

)
(which is351

thus the “density of states” function of statistical mechanics). By monotonicity, each solution of352

size k generates N −k solutions of size k+ 1. Of course, these solutions are not necessarily distinct.353

Indeed, the coefficient βk encodes not only the number of minimal solutions of size k, but also how354

all the smaller minimal solutions overlap. Since each vertex in level k+1 of the partial order lattice355

has only k + 1 incoming edges,356

(4.12) βk+1

(
N

k + 1

)
= nk+1 ≥ nk

N − k
k + 1

= βk

(
N

k + 1

)
⇐⇒ βk+1 ≥ βk.357

On one hand, this bound is tight in the sense that there is an expression E ′ for which β′k+1 = β′k = βk;358

on the other hand, it does not take advantage of all the known information about how minimal359

solutions overlap that is contained in {β0, . . . , βk−1}.360

An upper bound can be obtained from the lower bound of the dual problem. Together, these361

constrain βκ ≤ βk ≤ βN−κ for κ < k < N − κ. These bounds are shown in the center panel of362

Figure 2.1.363

There are several intuitively appealing interpolants between the bounds, including:364

1. linear interpolation, β̂k = βκ + k−κ
N−κ−κ (βN−κ − βκ);365

2. logarithmic interpolation, ln β̂k = lnβκ + ( k−κ
N−κ−κ )(lnβN−κ − lnβκ);366

3. the expected value of nk under an assumption that the graph is “structureless” at these367

scales – for example, lacking any minimal solutions of sizes κ < k < N − κ, and whose368

minimal solutions outside that range overlap randomly. See Appendix B for more details.369

4.4. Hybrid estimation. The upper and lower bounds developed in subsection 2.7 define370

feasible regions that are narrowest near x = 0 and 1. Details of the region near 0 < x < 1 are371

determined by Bezier coefficients βk for k ∼ xN . Estimates of βk from any source can dramatically372
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narrow the uncertainty in Ξ, although estimates alone do not change the bounds. One such estimate373

can be provided by Monte Carlo simulation. By definition, a fraction βk of the subsets of exactly k374

events satisfies E . Hence, we can estimate βk for any k to any desired confidence by evaluating E on375

a random sample of subsets of events. Another estimate, for the special point x̃ = 1/2 where each376

event is equally likely to occur or not, is provided by 2−NN , where N is the number of solutions377

of the corresponding deterministic satisfiability problem.378

4.5. Sensitivity analysis. The satisfiability Ξ(E ,x) is a multi-affine function of the event379

probabilities, since multiple appearances of the same event within a single conjunction can be380

reduced to a single occurrence. That is, it can be written as
∏N
i=1(ai + bix̃i). Maximizing or mini-381

mizing the satisfiability is thus, in principle, not difficult once the coefficients have been determined.382

However, a common problem is to optimize satisfiability under correlated constraints on the event383

probabilities, such as constraining them to lie in a subspace of <N .384

Restricted to a subspace of dimension M , the satisfiability can be thought of as a smooth (be-385

cause it is a multinomial) M -dimensional manifold. An approximation allows us to apply standard386

tools such as sensitivity analysis or differential geometry to this manifold. For example, suppose the387

probability of each event depends linearly on a finite resource such as energy, bandwidth, vaccine, or388

human time and effort. Re-allocating resources from one set of events to another can be modeled as389

a perturbation in the corresponding direction. The partial derivatives ∂
∂xi

Ξ(E ,x) are a differential390

form of the leave-one-out or Birnbaum importance [2] of event Ei. In the graphical representation391

of the problem, they define a notion of graph derivatives.392

5. Homogeneous Example. The following simple, analytically tractable example illustrates393

an important point: the relative contribution of different events to the overall satisfiability depends394

on the probability of the individual events, even in a homogeneous system. Concretely, think of395

two strains of an infectious disease with different transmissibilities spreading over a human contact396

network in which all contacts are identical. Obviously, the more transmissible strain is more likely397

to infect any given person; less obviously, the particular contacts whose removal most reduces the398

probability of infecting that person may differ.399

Consider the set of N = 7 events and the expression400

(5.1) E = (e1 ∧ e2 ∧ e3) ∨ (e1 ∧ e4 ∧ e5) ∨ (e6 ∧ e7).401

The clauses (and hence the minimal struts) are defined by the sets L1 = {1, 2, 3}; L2 = {1, 4, 5};402

and L3 = {6, 7}. An equivalent network reliability problem is the probability of reaching T from S403

on the graph in the left panel of Figure 5.1, constructed using the algorithm in Appendix A. The404

three minimal struts are the simple paths from S to T in this graph; the 10 minimal cuts are easily405

seen to be those given in Table 5.1, which are (S, T ) cut sets for this graph. The right panel of406

Figure 5.1 shows a graph for the dual expression. The minimal struts and cuts for the graph in the407

left panel are the minimal cuts and struts, respectively, for the graph in the right panel.408

Table 5.1
The ten minimal cuts for the example expression in Equation (5.1).

{1, 6} {2, 4, 6} {2, 5, 6} {3, 4, 6} {3, 5, 6}
{1, 7} {2, 4, 7} {2, 5, 7} {3, 4, 7} {3, 5, 7}
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67

45

3

Fig. 5.1. Graphical representations of the expression E in Equation (5.1) (left panel) and its dual (right panel).
Edges with the same contribution to the satisfiability, as evident by symmetry, are colored the same.

5.1. Satisfiability. Consider the first clause, e1 ∧ e2 ∧ e3. The probability of the minimal409

strut corresponding to this clause is p({1, 2, 3}) = x3(1− x)4; its total probability (including all its410

descendants) is pt({1, 2, 3}) = x3.411

Because there are only three minimal struts, the Inclusion-Exclusion expansion for Ξ(E , x)412

contains only 23 − 1 terms and can easily be written down by inspection:413
414

Ξ(E) = p(e1 ∧ e2 ∧ e3) + p(e1 ∧ e4 ∧ e5) + p(e6 ∧ e7)415

− p(e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5)− p(e1 ∧ e2 ∧ e3 ∧ e6 ∧ e7)− p(e1 ∧ e4 ∧ e5 ∧ e6 ∧ e7)416

+ p(e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ∧ e7).417418

Substituting in the total probability for each term yields the power series in x (i.e., the Taylor series419

at x = 0):420

(5.2) Ξ(E , x) = x2 + 2x3 − 3x5 + x7.421

There are 210 − 1 = 1023 terms in the Inclusion-Exclusion expansion in terms of minimal cuts, so422

it is more difficult to write down,2 but it yields the following power series in y = 1 − x (i.e., the423

Taylor series at x = 1):424

(5.3) Ξ(E , 1− x) = 1− Ξ(E , y) = 1− 2y2 − 7y3 + 20y4 − 18y5 + 7y6 − y7
425

Equivalently,426

α = (0, 0, 1, 2, 0,−3, 0, 1)(5.4a)427

α = (1, 0,−2,−7, 20,−18, 7,−1).(5.4b)428429

Using Equation (4.7), we find for this expression430

β = (0, 0, 1/21, 1/5, 18/35, 19/21, 1, 1)(5.5a)431

β = (1, 1, 19/21, 18/35, 1/5, 1/21, 0, 0).(5.5b)432433

2Obviously, since this is more than the number of possible distinct configurations, the expansion can be greatly
simplified.
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Notice that, although the Taylor coefficients are not related in any obvious way, the Bernstein434

coefficients satisfy Equation (4.6).435

Table 5.2
Degree of largest exact term in an Inclusion-Exclusion expansion of the example expression (5.1) truncated at

depth D.

κ(d) 4 6 7
d 1 2 3 4 5 6 7 8 9 10

κ(d) 2 4 4 5 5 5 5 6 6 7

The functions κ(d) and κ(d) defined in (4.1) for this expression are tabulated in Table 5.2. Now436

suppose we truncate the Inclusion-Exclusion expansions at depth D = 1, i.e., not even considering437

pairs of minimal struts or cuts. The resulting Taylor expansion at x = 0 is exact up to and including438

terms of order xκ(1) = x4, while the Taylor expansion at x = 1 is exact up to and including terms of439

order (1−x)κ(1) = (1−x)2. These estimates are shown in the center panel of Figure 2.1. Although440

each approximation tracks the exact function poorly through the transition region, the Bernstein441

representation produced by combining the two Taylor expansions determines the value of every442

coefficient – and thus, the function itself – exactly, since κ(1) +κ(1) = N −1. Suppose, for the sake443

of argument, that κ(1) were smaller, say 3. Monotonicity and linear interpolation between known444

coefficients define three possible values for β4: a lower bound of 1/5, an upper bound of 19/21, and445

an interpolated value of 58/105. The resulting bounds and interpolation are shown in the right panel446

of Figure 2.1, along with the exact result.447

6. Heterogeneous Systems. Suppose we are given a problem instance, i.e., an expression448

E with specified event probabilities x̃. Parameterized forms of the probabilities are often, but not449

always, part of the problem specification. For example, the events E may be generated by a Poisson450

process operating for a time τ or, equivalently, by interactions with a coupling constant τ . The451

transmission of infectious disease from one host to another is often modeled as a Poisson process452

whose probability depends on the overall transmissibility of the pathogen, τ , and the duration453

of contact between the hosts, ρ. More generally, any dynamical system whose configurations are454

probabilistically distributed (in time or across ensembles of identically prepared systems) as an455

exponential of a property of the configuration can be thought of as a collection of Poisson events with456

heterogeneous rates.3 Such systems include statistical mechanical systems governed by Boltzmann457

distributions and field-theoretical systems governed by a least-action principle.458

Applying the duality symmetry to the weak- and strong-coupling perturbation series relied459

on extending a particular problem instance into a one-parameter family whose solution smoothly460

interpolated between 0 and 1. This parameter completes the transition from satisfiability as a binary461

function of binary variables to a continuous function of a continuous variable. For the heterogeneous462

problem, we proceed analogously, first constructing a mapping to a two-parameter representation463

in which the two degrees of freedom contained in x̃1 and x̃N are replaced with a “location” λ464

for a homogeneous case and an envelope ε capturing the extent of heterogeneity. This mapping is465

convenient for distinguishing the effects of stronger interactions from those of heterogeneity through466

standard sensitivity analyses. Then, in order to apply perturbative methods, we consider curves in467

this two-dimensional space along which we can ensure the satisfiability is monotonic.468

3This does not imply that the dynamics of such systems are Poisson processes, only that steady-state or equilib-
rium distributions can be modeled using them.
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Fig. 6.1. (Left) The coordinate mapping from x̃1, x̃N to λ, ε defined by (6.1). Lines of constant x̃1 are mapped
into blue solid curves; lines of constant x̃N are mapped into yellow dashed curves. The background is shaded by
the satisfiability for the example expression when x̃B is the mean of x̃A and x̃C . The red curve is the parametric
curve (λ(t), ε(t)) defined under the polynomial decomposition of subsection 6.1 for the case x̃1 = 1/4, x̃N = 3/4. The
square on the curve is the location of the example case. Notice that if ε were any larger, the parameterized curve
would violate the unitarity constraints ε ≤ min(λ, 1−λ). The dashed red curve is the parametric curve defined under
the logarithmic decomposition of subsection 6.2 for this case. (Right) The first 10 Bezier polynomial approximants
defined in (4.9) to the unit triangle are shown inscribed in the triangle. The quadratic that passes through the points
(0, 0), (1/2, 1), and (1, 0) is shown in black for comparison.

Generally, the probabilities x̃i are not unrelated, even when they are not identical. That is,469

we can consider them all as functions xi(t), of a single parameter t ∈ [0, 1] with the special values470

xi(0) = 0, xi(1) = 1, and xi(t
∗) = x̃i, for some t∗ independent of i. Colloquially, we may say that E1471

is “twice as likely as” E2, for example. Such a statement does not specify a unitary parameterization472

over the whole domain, since it cannot be true for x2 > 1/2.473

If the parameterization is not specified, we are free to create an arbitrary one. In subsection 6.1,474

we describe a parameterization that is applicable in the absence of a parametric form for x̃i; in475

subsection 6.2, a different parameterization for a specific, important case when the events are476

generated by Poisson processes with different rates.477

6.1. Polynomial decomposition. A useful polynomial decomposition is illustrated in Fig-478

ure 6.1:479

xi = λ+ wiε and wi = (x̃i − λ̃)/ε̃, where(6.1a)480

λ̃ ≡ (x̃1+x̃N )/2 and ε̃ ≡ (x̃N−x̃1)/2.(6.1b)481482

This mapping results in a particularly simple transformation between the original problem and483

its dual, for which x̃ = 1− x̃ and the ordering of events is reversed (i.e., x̃N = 1− x̃1):484

λ = 1− λ; ε = ε; wi = −wN+1−i.(6.2)485486

Repeating the analysis of subsection 4.2 shows that the satisfiability can be written as a finite487

Taylor series in two variables analogous to (4.2):488

(6.3a) Ξ(E , λ, ε,w) =

N∑
k=0

N−k∑
`=0

αk,`λ
` εk489
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or, in a mixed Bernstein-Taylor basis:490

Ξ(E , λ, ε,w) =

N∑
k=0

N−k∑
`=0

γk,`(w)B(N − k, `, λ)εk.(6.3b)491

492

Furthermore, the gradient of the satisfiability at any point in the λ− ε plane is easily computed in493

terms of γ:494

∂Ξ(E , λ, ε)
∂λ

=

N∑
k=0

N−k−1∑
`=0

(γk+1,` − γk,`)B(N − k − `− 1, `, λ)(6.4a)495

∂Ξ(E , λ, ε)
∂ε

=

N∑
k=1

N−k−1∑
`=0

kγk,`B(N − k − `, `, λ)εk−1.(6.4b)496

497

Duality provides a generalization of the reflection symmetry previously obtained for homoge-498

neous systems (4.11):499

(6.5) γk,`(−w) = γk,N−k−`(w)500

Hence, order by order in ε, we can use methods of subsection 2.6 to evaluate both the lowest and501

highest order coefficients in λ. Interpolation is not as easy, because Ξ is not necessarily monotonic502

order by order in ε. Instead, we introduce parametric curves in the λ − ε plane. As long as xi(t)503

is monotonic, the satisfiability must also be monotonic in t, so we can apply the interpolation504

scheme developed for the homogeneous case in subsection 4.3 to Ξ(E , t) to develop bounds on the505

satisfiability that are exact up to some order in t.506

To simplify the perturbative analysis, we choose λ(t) = t, which implies t∗ = λ(t∗) = λ̃, and507

normalize the weights w1 = −wN = 1, which implies ε(t∗) = ε̃. Then we design a function ε(t) that508

1. satisfies unitarity: ∀t ∈ [0, 1], 0 ≤ ε(t) ≤ min(t, 1− t) ≤ 1/2;509

2. remains invariant under duality: t↔ 1− t;510

3. maintains the semantics of λ and ε as the midpoint and half-width of [x1(t), xN (t)];511

Along the parameterized curve, (6.3a) becomes512

(6.6) Ξ(E , t,w) =

N∑
k=0

N−k∑
`=0

αk,`λ(t)` ε(t)k.513

Because of the first condition above, ε(t) vanishes at the points t = 0 and 1 where the exact solution514

to the homogeneous problem is known, and the Taylor expansion can be readily determined at both515

points.516

An appealing choice for ε(t) is a low-degree polynomial. When ε(t) is a degree-m polynomial,517

the multinomial Taylor series reduces to a degree-mN polynomial in t. However, it may require518

extremely large m to maintain unitarity while simultaneously representing the full range of proba-519

bilities x̃N − x̃1. For example, as illustrated in the left panel of Figure 6.1, a quadratic ε(t) meeting520

these constraints cannot represent problems in which x̃N − x̃1 > 1/2. The Bernstein approximants521

defined in (4.9) for the unit triangular function, T (t) = 1− 2|t− 1/2|, provide a convenient way of522

describing the lowest-order polynomial that can represent the full range of probabilities. That is,523

ε2n(t) =

2n∑
k=0

T (k/n)B(n, k, t) = 1− 1

n

n∑
j=−n

|j| [B(2n, n+ j, t) +B(2n, n− j, t)] .(6.7)524

525
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where n is the smallest integer such that x̃N − x̃1 ≤ 2ε(1/2) = 1 − 21−2n. For n = 1, this reduces526

to ε2(t) = 2t(1− t), and, as noted above, x̃N − x̃1 must be less than or equal to 1/2. The functions527

ε2n for n ≤ 10 are illustrated in the right panel of Figure 6.1. Substituting xi(t) = t+wiε2(t) into528

the Taylor series (6.3a) gives529

Ξ(E , t) =

3N∑
k=0

α′kt
k, where α′k =

N∑
u=0

N−u∑
r=0

2r(−1)k−u−r
(

k

k − u− r

)
αr,u.(6.8)530

531

6.2. Logarithmic decomposition. When parametric forms of the probabilities x are speci-532

fied, it is more natural to use them than to pick an arbitrary parameterization as in subsection 6.1.533

Here we develop a decomposition and related parameterization appropriate to the important case534

of independent Poisson processes with heterogeneous rates, i.e., xi(τ) = 1− e−ρiτ . In this case, it535

is more useful to perform the decomposition in a logarithmic space, using the geometric, instead of536

the arithmetic, mean. Choosing τ∗ = 1, the analogues of (6.1) become:537

x̃i(τ) = 1− e−(ρ+wi∆)τ and wi = − [ln(1− x̃i)− ρ] /∆, where(6.9a)538

ρ ≡ (ρ1+ρN )/2 = − ln
√

(1− x̃1)(1− x̃N ) and ∆ ≡ (ρ1−ρN )/2 = ln

√
1− x̃N
1− x̃1

.(6.9b)539

540

When the rates ρi are all rationally related – as is common – the exponent can be written as the541

ratio ρi/ρN = mi/n where n is the greatest common divisor of ρi and mi is an integer greater than542

or equal to 1. Then rescaling the parameter gives543

xi(t) = 1− tmi , where t(τ) = e−
ρ1τ/n.(6.10)544545

The satisfiability can thus be written as a degree-M polynomial in t, where M =
∑
imi.546

7. Heterogeneous example. Consider the same example as in section 5, except with het-547

erogeneous probabilities x̃.4 Suppose events in each equivalence class have the same probability:548

(7.1) x̃i =

 xA = 1− yA i = 1
xB = 1− yB 2 ≤ i ≤ 5
xC = 1− yC 6 ≤ i ≤ 7.

549

Then a straightforward analysis of the three minimal struts gives550

Ξ(E ,x) = x2
C + (1− x2

C)xAx
2
B(2− x2

B)(7.2)551552

and, from the 10 minimal cuts:553

Ξ(E ,x) = 1− yC(2− yC)
[
yA + (1− yA)y2

B(2− yB)2
]

(7.3)554555

In this simple example, these polynomials in three variables are amenable to direct analysis. Even556

here, though, if all the probabilities x̃i were distinct, Ξ and Ξ would be multinomials in seven557

dimensions, with potentially as many as 128 terms.558

4Code for reproducing these results in Mathematica is available at ....
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Fig. 7.1. Approximation error in the satisfiability Ξ for the heterogeneous example of section 7 with
(x̃A, x̃B , x̃C) = 1/4, 3/8, 1/2, using the decomposition described in subsection 6.1 and a linear interpolation between
the Bezier coefficients determined by a depth-2 expansion at λ = 0 and a depth-1 expansion at λ = 1.

As discussed in subsection 4.5, the derivative of Ξ(x̃B + 2α, x̃B , x̃B − α) evaluated at α = 0559

gives the effects of redistributing resources among the interactions that enable the single event in560

class A and the two events in class C. For this example, we find561

(7.4)
dΞ(x̃B + α, x̃B , x̃B − 2α)

dα

∣∣∣∣
α=0

= −2x̃B
(
x̃3
B − 2x̃B + 1

)
.562

This function changes sign at x̃B ≈ 0.61, signifying that the relative importance of events in class563

A and C depends on the probability of the events in class B.564

7.1. Transforming to λ− ε space. Expressions for the elements of the matrix γ, defined in565

(6.3b), in terms of weights a, b, and c defined in (6.1) for the corresponding probabilities x̃A,x̃B ,566

and x̃C are given in Table 8.1. The first row of γ comprises the elements of order O(ε0). It is567

thus independent of a, b, and c, and reduces to the Bernstein coefficients for the homogeneous case568

given in (5.5a). The terms given exactly by a depth 2 Inclusion-Exclusion expansion at λ = 0 and569

a depth-1 expansion at λ = 1 are indicated by the shading in Table 8.1 and in the table below.570

For ease of explication, here we consider only cases with x̃B = (x̃A + x̃C)/2, i.e. a = −c = ±1 and571

b = 0. In this restricted example, the Bernstein transformations of the expressions in Table 8.1572
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reduce to:573

(7.5) γ =



0 0 1
21

1
5

18
35

19
21 1 1

0 0 − 2
15 − 2

5 − 17
30 − 1

6 0 0

0 1
8

1
4

9
40 − 1

10 0 0 0

− 1
16 − 1

16 − 1
96

3
32 0 0 0 0

0 − 3
256 − 3

128 0 0 0 0 0
1

512
1

512 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


574

The shading shows the coefficients that can be determined exactly using the truncated Taylor series.575

Examining the third row, for example, illustrates that the rows of γ are not necessarily monotonic,576

and thus interpolations and bounds developed in subsection 4.3 are not immediately applicable.577

Plots of Ξ along the two parametric curves described in subsection 6.1 and subsection 6.2 along578

with the bounds and interpolation available along the curve are shown in Figure 7.2 for the first case.579

Of course, the heterogeneous case must also lie between the homogeneous cases for x(t) = xA(t)580

and xC(t), and these bounds are also shown in the figure.581

Table 8.2 displays results for several specific choices of x̃, considering only the depth-2 Inclusion-582

Exclusion expansion for minimal struts and the depth-1 expansion for minimal cuts. These specific583

cases were chosen to illustrate the effects of scaling and translating the probabilities or replac-584

ing them with their complements (i.e., transforming to the dual problem), and to compare the585

polynomial and logarithmic decompositions.586

8. Discussion. We have described a novel approximation technique for mostly monotonic587

probabilistic satisfiability problems with event-specific probabilities. Its first stage computes the588

weak- and strong-coupling perturbative expansions of statistical physics – which are seen to be589

Inclusion-Exclusion expansions – in terms of certain problem-specific minimal sets. There may be590

up to m = 2N of these sets; if they are not given explicitly, they may be sampled in at worst591

O(N2 logN) steps for each of S samples. The expansions can be truncated at an arbitrary depth592

D ≤ N , producing
∑D
i=1

(
M
i

)
terms at a cost of order SD. The truncated expansions separately have593

undesirable properties. In particular, they do not respect the important constraints of monotonicity594

and unitarity. Imposing unitarity allows them to be combined into a Bezier polynomial that provides595

a good approximation – in absolute, if not necessarily relative, terms – across the entire domain.596

Imposing monotonicity allows the construction of problem-specific, tight upper and lower bounds597

on the approximation error due to truncation. The bounds are tight in the sense that expressions598

with the same truncated expansions can be constructed whose satisfiabilities saturate both bounds,599

whereas any estimator that violates the bounds can be shown to be either non-monotonic or non-600

unitary. It remains to be seen how sampling affects the quality of the bounds.601

In this work, we have explored the weak- and strong-coupling perturbation series, which are602

Taylor series expansions around the distinguished points at λ = 0 and 1 and at ε = 0. In the603

heterogeneous case, in addition to these points the point (λ, ε) = (1/2, 0) and the boundary (λ, ε) =604

(λ,min(λ, 1− λ)) admit interesting simplifications. The satisfiability at (1/2, 0) is simply related to605

the deterministic solution; along the boundary, the probability of the most or least probable events606

ei is 1 or 0, respectively. When x̃i = 0, clauses that include ei can be ignored, because they never607
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Fig. 7.2. Results for the heterogeneous example of section 7 with (x̃A, x̃B , x̃C) = (1/4, 3/8, 1/2) when no para-
metric form for x̃ is specified, as in subsection 6.1 (left panels) or when the events result from Poisson processes,
as in subsection 6.2 (right panels). (Top) The parameterized probabilities (from bottom) xa, xb, and xc. (Bottom)
The exact satisfiability Ξ (solid curve) and interpolation (dotted curve) derived here along the parametric curve,
along with truncated Taylor expansions for a depth-2 approximation at λ = 0 and depth-1 at λ = 1 (dashed lines).
Notice that the Taylor series do not respect unitarity.The lightly shaded region is bounded by the exact homogeneous
solutions for xa and xc; the darker shading uses the monotonicity constraint with the approximate solution.

contribute to the satisfiability; when x̃i = 1, the event itself can be ignored, because it is always608

true. In the dual representation, the same holds true for x̃i = 1 − x̃i. In principle, it is possible609

to develop perturbation series in ε around this point and the boundary segments. This leads, in610

turn, to a step-wise renormalization approach that peels off the most and/or least probable events611

at each step. Unfortunately, exploring these approaches is beyond the scope of this work.612

The approximations and bounds developed here have been applied in the context of network613

reliability to a range of dynamical systems, including infectious disease transmission over a contact614

network [12], crop pest movements over a commodity trade network [13], and the Ising model in615

the presence of an external field [14]. We hope that the synthesis presented here provides both a616

new perspective on some old problems and a tool that others will find useful in an even greater617

range of applications.618

Appendix A. Transforming a satisfiability problem into S-T reliability on a graph.619

620

Require: L, a set of sets of integers in [1,. . . ,N], i.e., clauses in the expression’s DNF form621
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Table 8.1
(Top) The matrix of Taylor coefficients at (λ, ε) = (0, 0), α defined in (6.3a); (bottom) the corresponding

matrix α at (1,1) for the heterogenous example. Shading in the upper left (respectively, bottom right) indicates
coefficients whose values are given exactly by the depth-2 perturbative expansion at (0, 0) (respectively, the depth-1
expansion at (1, 1)). Notice that the coefficients along the skew-diagonal match, and that the first row of each matrix,
corresponding to ε = 0, agrees with the Taylor series for the homogeneous example, (5.4a) and (5.4b).



0 0 1 2 0 −3 0 1

0 2c 2(a+ 2b) 0 −3a− 4(2b+ c) 0 a+ 4b+ 2c 0

c2 2b(2a+ b) 0 −2(2b+ c)(2a+ 2b+ c) 0 2a(2b+ c) + 6b2 + 8bc+ c2 0 0

2ab2 0 −2
(
a(2b+ c)2 + 2b

(
b2 + bc+ c2

))
0 a

(
6b2 + 8bc+ c2

)
+ 4b

(
b2 + 3bc+ c2

)
0 0 0

0 −b
(
4a
(
b2 + bc+ c2

)
+ b3 + 2bc2

)
0 b

(
4a
(
b2 + 3bc+ c2

)
+ b

(
b2 + 8bc+ 6c2

))
0 0 0 0

− ab2
(
b2 + 2c2

)
0 b2

(
a
(
b2 + 8bc+ 6c2

)
+ 2bc(b+ 2c)

)
0 0 0 0 0

0 b3c(2a(b+ 2c) + bc) 0 0 0 0 0 0

ab4c2 0 0 0 0 0 0 0





1 0 −2 −7 20 −18 7 −1

0 −2(a+ c) a− 16b− 6c 8(a+ 6b+ 3c) −2(6a+ 13(2b+ c)) 6(a+ 4b+ 2c) −a− 2(2b+ c) 0

− 2ac c(2a+ c)− 8b2 − 16bc 4
(
2a(2b+ c) + 9b2 + 14bc+ c2

)
−4
(
4a(2b+ c) + 13b2 + 18bc+ 2c2

)
5
(
2a(2b+ c) + 6b2 + 8bc+ c2

)
−2a(2b+ c)− 6b2 − 8bc− c2 0 0

c
(
ac− 8b2

)
8b
(
a(b+ 2c) + b2 + 5bc+ c2

)
−4
(
a
(
7b2 + 10bc+ c2

)
+ b

(
5b2 + 17bc+ 5c2

))
4
(
a
(
6b2 + 8bc+ c2

)
+ 4b

(
b2 + 3bc+ c2

))
−a
(
6b2 + 8bc+ c2

)
− 4b

(
b2 + 3bc+ c2

)
0 0 0

4b2c(2a+ 2b+ c) −2b
(
4a
(
b2 + 4bc+ c2

)
+ b

(
b2 + 12bc+ 8c2

))
3b
(
4a
(
b2 + 3bc+ c2

)
+ b

(
b2 + 8bc+ 6c2

))
−b
(
4a
(
b2 + 3bc+ c2

)
+ b

(
b2 + 8bc+ 6c2

))
0 0 0 0

− 2b2c(2a(2b+ c) + b(b+ 2c)) 2b2
(
a
(
b2 + 8bc+ 6c2

)
+ 2bc(b+ 2c)

)
−b2

(
a
(
b2 + 8bc+ 6c2

)
+ 2bc(b+ 2c)

)
0 0 0 0 0

b3c(2a(b+ 2c) + bc) −b3c(2a(b+ 2c) + bc) 0 0 0 0 0 0

− ab4c2 0 0 0 0 0 0 0



Table 8.2
Summary of approximation quality for several instances of x̃ in the heterogeneous example discussed in sec-

tion 7. Ξ is the true value of the satisfiability. Estimates are constructed by interpolating between the left and right
expansions for missing coefficients in θ. The polynomial decomposition (labeled “P”) uses the linear interpolation
defined in subsection 4.3; the logarithmic one (labeled “L”), the logarithmic interpolation defined there. The bounds
are determined by monotonicity in θ. Results for the polynomial parameterization are not shown in the last column,
where x̃N − x̃1 > 1/2, and it does not respect unitarity.

(x̃A, x̃B , x̃C) (0.22,0.31,0.39) ( 1
4 , 3

8 , 1
2 ) ( 1

2 , 3
8 , 1

4 ) ( 1
2 , 5

8 , 3
4 ) ( 1

2 ,0.65, 3
4 ) -

(ρA, ρB , ρC) ( 1
4 , 3

8 , 1
2 ) - - - (ln 2, 3

2 ln 2,ln4) (1
4 , 17

8 ,4)

Ξ(E , x̃) 0.190 0.299 0.185 0.700 0.707 0.971

estimate P 0.185 0.288 0.190 0.666 0.668 -
upper P 0.258 0.413 0.343 0.878 0.879 -
lower P 0.147 0.213 0.097 0.434 0.438 -

rel. diff. P 0.022 0.037 −0.025 0.049 0.055 -

estimate L 0.199 - - - 0.758 1.000
upper L 0.228 - - - 0.867 1.000
lower L 0.162 - - - 0.366 0.362

rel. diff. L −0.051 - - - −0.072 −0.029

function SAT2Graph(L)622

S ← {1, . . . , N}; T ← ∅; V ← {S, T}; E ← ∅ . Initialize vertex and edge sets, V and E623

push(stack, (S,L))624

while stack is not empty do625

(v, `)← pop(stack)626

s← ∩c∈` c . s contains only the events that appear in every clause in `627

for si ∈ s do . Add an incoming edge to v and move to its source628
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v′ ← v \ si629

V ← V ∪ v′; E ← E ∪ (v′, v); Labels(v′, v)← si630

v ← v′631

for `j ∈ ` do `j ← `j \ si end for . Remove this event from further consideration632

end for633

s← ∪c∈` c . s contains events that appear in any clause in `634

for si ∈ s do . Partition ` into clauses that do or don’t contain si635

`′ ← {c ∈ `|si ∈ c}; `← ` \ `′636

if `′ 6= ∅ then . Add an incoming edge to v and move to its source637

v′ ← (∪c∈`′ c) \ si638

V ← V ∪ v′; E ← E ∪ (v′, v); Labels(v′, v)← si639

for `j ∈ `′ do `j ← `j \ si end for. Remove this event from further consideration640

push(stack, (v′, `′))641

end if642

end for643

end while644

return (V, E, Labels)645

end function646

Appendix B. The expected value of nk+1 given nk. Any given configuration at level647

k + 1 is connected to k + 1 configurations at level k, so the probability it is connected to any648

specific configuration is (k+1)/(Nk). Hence, under the assumption that connections are independent,649

the probability that a configuration at level k + 1 is not connected to any of nk configurations at650

level k is
[
1− (k+1)/(Nk)

]nk , and the expected value of nk+1 given nk is651

(B.1) 〈nk+1〉 =

[
1−

(
1− k + 1(

N
k

) )nk]( N

k + 1

)
652

In the limit βk � 1, this reduces to653

(B.2) 〈nk+1〉 −−−−→
βk�1

(N − k)nk,654

as it should. In the example of section 5, the difference between this interpolation and linear655

interpolation is negligible. In larger systems, with more undetermined coefficients, however, the656

overlap is significant even for fairly small βk. Further analysis is beyond the scope of this work.657
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