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Background

 The COVID-19 pandemic caused extreme drops in public transportation ridership
for long periods of time, and many transportation agencies faced unprecedented
revenue losses resulting in employee lay-offs and reduced services [1][2].

 Public transportation service reductions disproportionately affected already
vulnerable populations [3].

 This model is a flexible tool for designing public transportation restriction policies
for future viral epidemics, and it is applicable for a wide range of policy
prioritization strategies.

Methods
Two-patch ODE model with Lagrangian mobility
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Two patches with different infection

risks:

 Patch 1 is the home environment
(home, work, school)

e Patch 2 is the transportation
environment (bus, subway car)
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* qq12 = proportion of population
which uses public transportation

* t4 = proportion of time each rider
spends on public transportation

Patch 1
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Modeling transportation restrictions

Three variables of interest describe the restriction:
» day the restriction is implemented
* length of the restriction (1)
» strength of the restriction (p)

We explore the impact of varying the proportion of the population using public
transportation (q12)-

Cost framework

Cost is calculated for the total amount of lost potential revenue for the
duration of the restriction(s):

C = ¢pqi12NI

Crotal = Pq12N (p1l1 + p2(1 — p1)l2)

Social vulnerability framework

We use a modified version of the CDC Social Vulnerability Index to calculate
traits (S) in the population caused by restrictions:

* a is the prop. of the population that will lose their only vehicle
* b isthe prop. of the a population that will face unemployment
e c isthe prop. of the ab population that will face housing cost burden

S = q12N(a + ab+ abec)(p1 + p2(1 — p1))
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Results
Case study: COVID-19-like outbreak in Ithaca, NY

Effects of restriction parameters on final epidemic size
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Figs. 1-3 show the effects of the restriction strength, length, and start date
on the final epidemic size.
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Fig. 4 shows that the most effective start date is almost entirely a function
of the length of the restriction, not of the strength.

Combining the analysis metrics
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* The
restriction designs which reflect a
wide range of priorities (such as
minimizing cost, minimizing length,
ete).

model returns sets of
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* Fig. 5 shows the full range of

er 1'_{;] restriction design possibilities and

u U'ffg their associated relative final sizes,

b2 U'f:l costs, and SV traits. The model

100 0.50 assumes that the most effective
Fig. 6 start date is used.

* Fig. 6 shows a few restriction
designs for Ithaca if the
policymakers’ goal is to minimize
final size and cost.

Future work
Adding behavioral complexity and increased population heterogeneity to the model

Making Patch 2 infection risk vary to represent changes in rider density, cleaning
frequency, etc.

Adding a spatial network component or more patches to represent specific public
transportation routes and Patch 1 environments

Calibrating the SEIR parameters with a historical outbreak in a city and .using the
model to compare actual and ideal public transportation responses
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