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Background

Calibrating the gravity model

Measles: a highly infectious childhood disease with - Obtained 2011-2015 ACS county-level commuting flow data for Virginia from
an effective vaccine US Census data repository [9].

- Successful vaccination campaigns reduced measles deaths by - Made county-level predictions from zipcode-level model by aggregating flows

73% between 2000-2018 [1] up to county level, | o
- Declared eradicated in US in 2000 [2] - Calibrated the gravity model against county-level data by log-transforming input
parameters [10] and minimizing prediction MSE using scipy.minimize.

Factors contributing to declining vaccination worldwide e T

- COVID related disruptions, vaccine hesitancy, conflict and F;; = exp(0" + 11 In(N;) + 75 In(N;) — p’ In(dist (¢, 5))) § 300000 { RQ,: 085 -

instability [3] 5 .
where ‘é

Undervaccination has a significant cost = In(m) £ 2000

- 5% decline in vax rates — 3x cases [4] 1 § 150000

- Outbreak events in recent years with significant public health costs Ty = In(72) g 100000 -

(e.g NY 2018-2019, $8.4mil) [5] o = 1In(p) -
Goal: Understand & characterize outbreak risk arising 0" = In(0) =
from meaSleS undervaCCination in V|rg|nia predicted commuter flow (gravity)

M Eth Od s Equation 3. Log-transformed gravity model. [10] Figure 3. Calibrated gravity model.

Spatial tSIR model StUdy des'Q"

- First described by Xia et al [7] To understand basic properties and behavior of the model, a basic

y
- A stochastic metapopulation model originally used for analyzing Sensitivity analysis was carried out.

and inferring properties of historical measles case data . . . . .
- Performed Monte-Carlo simulation of the model with 8,000 draws per simulation.

metapopulation subpopulation individuals - Full factorial design

migration
processes

Variable Description Values
Disease transmissibility
)6 parameter. In this model, roughly 8,11.8,15.6,19.4, 23.2, 27
corresponds to Ry,

‘pop’ — patches with largest population

OS @®1 OR ‘outflux’ — patches with largest predicted
. The heuristic used to select the | outflow of individuals to other patches
Seeding zipcodes to initialize. Each ‘vax_ratio’- largest ratio of unvaccinated
Figure 1. A schematic representation of a metapopulation heuristic selected zipcode is initialized | individuals
with one infected individual ‘vax_raw’ — largest raw counts of

disease model. [6] unvaccinated individuals

‘unif’ — select patches uniformly randomly
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Equation 1. The governing equation of the tSIR model. [7] Table 1. Parameters of the analysis. All possible combinations were computed.
Gravity model Results
: Classmal.emplrlcal model used to model human mobility and The total attack size distributions were analyzed.
economic ﬂOWS Total attack size: k=9 Total attack size: B=27
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Equation 2. The gravity model. [7], [8] : i = e 0 —— =S EEEEEEEE o
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- Used zipcode-level geospatial data to parameterize the model. 20000- 20000-
- Latitude and longitude of zipcodes obtained using Nominatim API. 10000- 10000- b
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Straight-line pairwise distances computed using geopy package. 0 st s d L ____}
. . . . . . 10 15 20 25 10 15 20 25 5 6 7 8 9 5 6 7 8 9
- Zipcode level vaccination data obtained from VA insurance claims data B (transmissibility) K (# of initial infected individuals)
project at BIl. Data provided by Sifat Moon.
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Figure 2. Heatmap of VA vaccination rates.
Observations Next steps
- When beta low, 'outflux' causes larger outbreaks. - Model likely overpredicting total outbreak size. Beta
- When beta larger, 'pop' and 'vax_raw' are larger parameter likely needs to be tuned more rigorously
- Linear scaling with k, nonlinear with beta - More rigorous analysis:
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