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Background
- Many modeling teams have created forecasts to predict cases, death, 

and hospitalization on COVID-19 Forecast Hub 
- Multiple metrics are used to evaluate probabilistic forecasts but not 

intuitive for quantifying forecast diversity and change
- e.g. COVID-19 Forecast Hub Ensemble uses Weighted Interval 

Score(WIS) to weigh forecast models
- WIS measures how consistent a collection of prediction intervals is 

with an observed value instead of another distribution
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Results - Change
- In general, longer time horizons tend to show larger uncertainty
- However, Omicron BA.1 wave created a large uncertainty when 
prediction time gets closer
- The absolute values of Wasserstein distance seem to be proportional to 
the ground truth
- Prediction before and after the peak have large Wasserstein distance

Methods
- Wasserstein Distance: 

- scipy.stats.wasserstein_distance calculates the first Wasserstein 
distance between two 1D distributions u, v:

- Change: temporal updates of the same model
· Comparing forecasts for the same (target end date, location) 
across different horizons for the same model

- Diversity: similarity across different models
Comparing forecasts for the same (target end date, location, 
horizons) across different models
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Future Work
- Normalize Wasserstein Distance across time and locations
- Use network-based methods to connect and compare 

distributions
- Model Ensemble with optimal transport methods, e.g. barycenter 
- Evaluate geodesic and trajectory versions of Wasserstein 

distance
- Explore long-range projections (e.g. Scenario Modeling Hub)

Results - Diversity
- Both mean and variance influence Wasserstein distance 
- The most different model in day 1 is MOBS-GLEAM_COVID  due 
to its prediction spread
- The most different model changed to GT–DeepCOVID due to its 
prediction of increasing hospitalization (others decrease in 
mean)
- UVA-Ensemble and UMass-Trend forecasts get closer
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- Optimal Transport and Wasserstein 
Distance (Earth Mover’s Distance) provide a 
metric to compare two distributions and 
their geometry of the underlying space

- Compared to other metrics (e.g. KL 
distance and Jensen Shannon distance,) 
Wasserstein Distance is more intuitive in 
capturing qualitative changes 
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