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Model Equations

𝐋, a liability matrix of dim 𝐧 × 𝐧 where each element 𝒍𝒊𝒋 represents liability of 

node 𝐢 to node 𝐣
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Background
• Interbank lending can be considered an interconnected banking network comprising 

interbank liabilities and assets.

• In such networks, one bank’s failure to pay its liabilities can lead to a cascading 

effect, triggering a system-wide shockwave, as seen in the infamous 2008 financial 

crisis and the recent Silicon Valley Bank collapse.

• The Eisenberg-Noe model provides a framework to simulate cascading failures as 

financial contagions1. 

Experimental Setup
• We utilize six network centrality measures (degree, betweenness, closeness, 

clustering, PageRank) to select target banks for capital injection. Each centrality 

metric uniquely computes a node’s importance in the network. The amount of 

capital injection is determined by the mean of nominal obligations of all bank nodes.

• We use the NetworkX graph analytics library in Python.

• Code based on EN model code from Allocating Stimulus Checks in Times of Crisis2.

Conclusion
• Our analysis provides insight into different bailout strategies and their respective 

impacts on the stability of several synthetic graphs and a real-world financial 

network.

• The results indicate how network structure can play a role in centrality-based bailout 

strategies and how their combination can lead to notably different outcomes. This 

emphasizes the importance and feasibility of tailor-made bailout strategies for 

specific types of networks.
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Purpose
• To study and compare the effectiveness of graph centrality-based intervention 

strategies in mitigating financial contagions.

Input Data
Synthetic Datasets

         

Future Work
• Extending the model beyond the context of interbank lending networks and applying 

it to other complex network systems such as ride-sharing applications3, power grids, 

and any other system which benefits from a tailored approach to analyzing 

cascading failures and identifying critical nodes to mitigate system-wide failures

Results
Effect of Bailout Strategies on Various Models

The plots compare the impact of six selection strategies for bailing out banks in the 

four networks. As the number of banks with an injection of capital increases, the plots 

depict an increase in the number of banks saved from defaulting. Notably, the 

effectiveness of the strategies varies across network types, pointing toward the 

influence of network structure on intervention outcomes.
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Erdos-Renyi: 100 Nodes with edge creation probability 

of 0.22.

Stochastic-Block: 3 communities (30,30,40) with intra 

and inter com. prob. as 0.5 and 0.1, respectively.

Barabasi-Albert: 100 nodes with using 40 node seed 

graph and 20 edges for each incoming node.

Czech Bank: 11605 nodes with 9085 edges. 
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Let ഥ𝑝 = ( ҧ𝑝1, ҧ𝑝2, … , ҧ𝑝𝑛) represent the 

total obligation vector, which 

represents the payment level required 

for the complete satisfaction of all 

contractual liabilities by all nodes.

represents the relative liabilities matrix, 

which captures the nominal liability of 

one node to another in the system as a 

proportion of the debtor's node total 

liabilities.
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Assets Liabilities

represents the equity of node 𝑖

A directed graph 𝐺 = (𝑉, 𝐸) of financial entities. Assuming 𝑛 = 𝑉 .

Every node 𝑖 has these attributes,

o 𝒍𝒊𝒋 - Value owed to other entities (∀ 𝐣 ∈ 𝑽, 𝒋 ≠ 𝒊). Also known as liabilities.

o 𝒍𝒋𝒊 - Value owed by other entities (∀ 𝐣 ∈ 𝑽, 𝒋 ≠ 𝒊) to 𝒊. Also known as assets.

o 𝒆𝒊 - External assets
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