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Goals

Overall Goal: Universal Approach to Science Time Series
o Establish the standard procedure to predicting science/spatial bag time

Background
Al for Science

o Traditional science is driven by theories and differential equations. series with Hydrology, Earthquake Nowcasting, and COVID models.
Predictions are made based on these established formulas.
o New approach to science is driven by data. Predictions are made based on Current Goal: Build Hydrology Model for US, UK, and Chile
° ) 4 ’

models that rely entirely or heavily on data. DL is used to learn the
“hidden variables” and to find the complex formula behind a
phenomenon.

o Process input data from US, UK, and Chile to contain the same static
and dynamic variables.

o Run LSTM and Science Transformer models for predictions in US, UK,

Theory Driven Data-Driven and Chile.

o Compare LSTM vs. Science Transformer in predictions and model fit.

Laws of Nature

ML&

Phenomenology Probability
— — Current Work
Model ") Prediction Data Collection and Preprocessing
. . . ) o Found Hydrology data for UK and Chile based the standards set by the
Figure #1. Theory driven vs. data-driven science CAMELS-US hydrometeorological forcing data taken from 671

catchments in the US.
o Removed static and dynamic variables that are not present in all three

Science Time Series (S pa tial Ba g) datasets and unified the format of the filtered data.

o Science time series involves groups of time series data collected at

different geographic locations with different static data. LSTM Model Training
o In Hydrology, data includes a collection of 671 time series collected at 671 o Normalized input time series, numerical and categorical static data.
different catchments that vary by geological, soil, and climate o Set up LSTM model with Mean Square Error (MSE) as loss function and
characteristics. Normalized Nash-Sutcliffe Model Efficiency (NNSE) coefficient as model
o The Spatial Bag allows future forecasting in the y-direction and sequence- performance monitor.
to-sequence mapping in the x-direction. o Trained the model with a sequence length of 21 days and an epoch size
of 50.

o The LSTM network consisted of an input layer, a dense/MLP encoder
layer, two LSTM layers, a dense/MLP decoder layer, and an output layer.
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Figure #2. Spatial bag structure.

Future Work

Science Transformer and TFT Model

o Set up Science Transformer and Google’s TFT model with the same
Hydrology training data from US, UK, and Chile.

o Compare model efficiencies between LSTM and the two Transformer
models widely used to deal with sequence-to-sequence mapping in NLP.

Figure #3. LSTM network architecture
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o Utilize structure of the science time series to perform sequence-to- Add&Norm Final
sequence learning. Eiil® o
o Train model with CAMELS data from US and predict Hydrological tZ\T/Z

characteristics of UK and Chile with local static variables.
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Figure #4. Science transformer
architecture for Earthquake
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