Applying PCA to Improve Accuracy of VDH Health Opportunity Indicies

Student: Chelsea Qian

Advisor: Prof. Aaron Schroeder

Background and Model Overview

- The model aims to measure Health Opportunity Indicies (HOIs) by integrating multiple socioeconomic indicators.
- Based on linear model, we assign weights to each measures to calculate annual HOI scores for each county.
- Interactive visualizations are used to display these indicies, enabling comparisons across regions and providing summary statistics on each indicies.

Goals in this project

Improve model accuracy by refining Health Opportunity Indicies through PCA analysis and optimization of raw county data, specifically for year 2019 and 2020.

Aims to offer insights into regional disparities in health opportunities and supports data-drivien policy-making to enhance health equity.

ŴDH

Figure 1: Model Visualization

Analysis Process Continued

4. Select the principal components: Choose the Top principal components based on Eigenvalues. 5. Transform the data & Rotation: Project the original data onto the new feature space defined by principal components. Orthomax (varimax) rotation was applied to align the data more closely with the principal components

Method Used

Principal Components Analysis (PCA): a linear dimensionality reduction and machine learning method used to simplify a large dataset into smaller set while still maintaining significant patterns and trends.

Analysis Process

- 1. Standardize the data: adjust the dataset to have a mean of zero and standard deviation of one to ensure all variables are on the same scale.
- 2. Compute the covariance matrix to identify correlations: understand how features vary with respect to each other

Figure 7&8 Factors before and after rotation.

6. Obtain the final indicies: aggregate the transformed data for each related measure for each county to derive the final Health Opportunity Index

Results

Updated statistics for each county for year 2019&2020

Figure 3&4: Example of covariance matrix and calculated Covariance matrix

3. Calculate the Eigenvalues and Eigenvectors: derived from the covariance matrix to identify the principal components.

2019	F1	F2	F3	F4	F5
Eigenvalue	7.644	2.812	1.438	1.189	0.932
Variability (%)	44.964	16.541	8.459	6.993	5.484
Cumulative %	44.964	61.505	69.964	76.957	82.441
2019	Weights	eight Adjusted			
F1	44.964	0.58427534			
F2	16.541	0.21494022			
F3	8.459	0.1099181			
F4	6.993	0.09086634			
	76.957	1			

2020	F1	F2	F3	F4	F5
genvalue	6.687	3.178	1.745	1.177	0.909
ariability (%)	39.336	18.695	10.263	6.923	5.348
umulative %	39.336	58.032	68.295	75.218	80.566
2020	Weights	eight Adjuste	ed		
F1	39.336	0.5229646			
F2	18.695	0.24854621			
F3	10.263	0.13644492			
F4	6.923	0.09204427			
	75.218	1			

Figure 4&5: Eigenvalues and Weights for 2019 and 2020

References

Principal Component Analysis (PCA) explained. Built In. (n.d.). https://builtin.com/data-science/stepstep-explanation-principal-component-analysis

Exploratory factor analysis: Rotation. (n.d.). https://www.ibm.com/docs/en/spssstatistics/beta?topic=analysis-exploratory-factor-rotation

	D1	D2	D3	D4
51091970100	-1.207	-0.836	0.229	0.244
51017920101	-0.953	-0.764	0.253	0.992
51017920102	-0.699	-0.909	0.217	-0.101
51015070100	-0.869	-1.640	-0.436	-0.046
51015070802	-0.657	0.019	-0.314	0.798
51015070801	-0.532	-0.556	0.084	1.034
51015070200	-0.923	0.094	0.018	1.374
51165011200	-0.532	0.070	-1.163	1.400
51165011000	-1.543	0.048	-0.830	0.250
51005080301	-1.546	-0.130	0.718	0.865
51171040201	-0.674	-0.402	0.187	0.527
51005080302	-1.301	-0.908	0.423	0.543

Figure 9: Example of result statistics

Future Discussions

- Incorporate additional indicators: integrate more socioeconomic, environmental, and healthcare access indicators to enhance the robustness of HOIs.
- Temporal analysis: Conduct longitudinal analysis for trends and changes over time, identify factors contributing to improvements or declines.

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE