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. Find/develop an asymptotically-unbiased, direct nonparametric estimator of
Rényi Divergence

BaCkground . Use second-order Rényi divergence to quantify precision (fidelity) and recall

(diversity) of generative model & create frontier to visualize trade-off

Generative Models
- Are a class of machine learning models designed to generate new data samples
similar to existing datasets
- They learn underlying patterns & distribution of given dataset
- Examples: Text generation (ChatGPT) , image generation (DALLE)

Methodology
Need for Metric

- No ground truth labels for ger?erated samples Use a Fixed-K Bias-Corrected Estimator of Divergence
- "Good" vs. "bad" samples is unclear

-  Compared to discriminative models, which have clear false positives, true
negatives, etc.
- Need a way to quantify quality of model based on difference between real and
generated probability distributions
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- Popular ones include Fréchet Inception Distance (finds distance between feature me(l)
vectors) & Parzen Window (density estimator, computes likelihood)
- Issues: 1D scores can't distinguish failure cases, domain-specific

. Analyze sample contribution to divergence metric to audit unrealistic outliers

- Edges of K-nearest-neighbor graphs can be used in divergence estimation
- Points nearer each other contribute less to divergence, farther apart bigger
contribution
- Adirect, nonparametric estimator developed by Pdczos & Schneider:

- pili) := the Euclidean distance of the kth nearest neighbor of P, in the sample

- Recent proposed metrics are 2D, measure precision & recall tradeoff Pin | | _
- Precision: Measures fidelity, ability of model to produce realistic samples - v (i) := the distance of the kth nearest neighbor of P, in the sample Q;.,
- Recall: Measures diversity, ability of model to produce wide range of distinct - By 4 := Multiplicative bias-correcting term that depends on k and a
samples
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Renyi Divergence
- Family of divergence measures that quantify difference between 2 probability - Properties
distributions (P & Q), can be used as metric for generative models - Asymptotically-unbiased (converges to true divergence value)

- Curse of dimensionality, convergence rate: O ( -=

a . . . Yn
R (P” Q) — 1 ln zn Pi - Choice of k doesn't matter; fixed-k
a - —1 =1 a—1
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ql R_alpha Estimation vs. Sample Size for Different k values (2D)

— k=1

- Let P = Real distribution, Q = Generated distribution 071 ke
- R,(Q] | P) can measure precision (how much of Qis in P) B

— k=6

- R,(P]1Q) can measure recall (how much of Pisin Q)
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(a) Example distributions (b) Precision (¢) Recall Number of Samples
- Parametrized by a: a > 1 weights popular events more, a <1 weights rare Use estimation of Renyi Divergence (a=2) to calculate Precision and Recall
events, a->1 converges to KL divergence - Similar to precision-recall curve for classification, can create curve that represents
tradeoff
Estimating Divergence - Generated by confidence-thresholding Q (using intermediate distribution R)
- Often lack full distribution of P or Q, or the integrals are intractable, so Renyi than calculating corresponding R,(Q| |P) and R,(P]| | Q)
divergence can't be directly calculated .
- Therefore, need to estimate divergence 0 R—=P R— R
- Parametric/Nonparametric Estimators @ ®
- Parametric: Strong assumptions about distribution form (ex: fitting Gaussian), ?I'
fast but less accurate —
o . o _ . =
- Nonparametric: Minimal assumptions about distribution (ex: Kernel Density 3 R =R,
Estimator), slow but more accurate = R —= Q)
- Plug-in/Direct Estimators o 7
- Plug-in: Estimate density, plug-into divergence equation R,(P||R) =Recall
- Direct: Divergence directly estimated from data without explicit density . . . .
o Divergence Frontier: Precision-Recall Curve
estimations
- Will analyze sensitivity to outliers
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