Our work on DIBBs has led to the development of a broad class of highly scalable libraries for problems in multiple areas, including network science, computer vision, bioinformatics and climate science. NSSAC team members have contributed by developing scalable algorithms for network generation and subgraph detection, which have been applied to problems in public health.
Some of the key findings include:
- Highly scalable algorithms for generating instances from different kinds of network models, including preferential attachment and the Chung-Lu model
- Parallel algorithms for subgraph detection and scan statistics, which scale to networks with over hundred million edges
Division Director
Distinguished Professor in Biocomplexity, Biocomplexity Institute
Professor of Computer Science, School of Engineering and Applied Science
PAC learnability of node functions in networked dynamical systems
Additional Publications
Maksudul Alam, Maleq Khan, Kalyan S. Perumalla, and Madhav Marathe. Generating massive scale-free networks: Novel parallel algorithms using the preferential attachment model. ACM Transactions on Parallel Computing (TOPC) 7, no. 2 (2020): 1-35.
Saliya Ekanayake, Jose Cadena, Udayanga Wickramasinghe and Anil Kumar Vullikanti. MIDAS: Multilinear Detection at Scale, Journal of Parallel and Distributed Computing (JPDC), Volume 132, pages 363-382, October 2019
Wang, Lijing, Jiangzhuo Chen, and Madhav Marathe. "TDEFSI: Theory-guided Deep Learning-based Epidemic Forecasting with Synthetic Information." ACM Transactions on Spatial Algorithms and Systems (TSAS) 6, no. 3 (2020): 1-39.
A. Adiga, C. Barrett, S. Eubank, C. J. Kuhlman, M. V. Marathe, H. Mortveit, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, S. Swarup and A. K. Vullikanti, “Validating Agent-Based Models of Large Networked Systems”, Proc. Winter Simulation Conference (WSC 2019), Washington, DC, Dec. 2019.
Adiga, Abhijin, Chris J. Kuhlman, Madhav Marathe, S. S. Ravi, Daniel J. Rosenkrantz, Richard Edwin Stearns, and Anil Vullikanti. "Bounds and Complexity Results for Learning Coalition-Based Interaction Functions in Networked Social Systems." In AAAI, pp. 3138-3145. 2020.
Eubank, Stephen, Madhav Marathe, Henning Mortveit, and Anil Vullikanti. "Modeling Urban Mobility Networks Using Constrained Labeled Sequences." In International Conference on Complex Networks and Their Applications, pp. 955-966. Springer, Cham, 2019.
Prathyush Sambaturu, Aparna Gupta, Ian Davidson, S. S. Ravi, Anil Vullikanti, Andrew Warren. Efficient Algorithms for Generating Provably Near-Optimal Cluster Descriptors for Explainability. AAAI 2020: 1636-1643